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1. Analyze functional connectivity by means of analytical tools [1]. ﬁe\ ,_/
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Tighter Approximate Results

Linearization of the network dynamics around cluster-synchronized
trajectories + small gain theorem = tight stability conditions.

The brain can be abstracted by means of a

2. Apply theory to real data by deriving approximate conditions that closely
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Synchronization in the brain is a puzzling, yet ubiquitous, phenomenon. » functional brain networks »
For instance, synchronization patterns of neural activity are thought to be ) > nodes <— brain regions ,
biomarkers of neurological disorders, and synchronized regions correlate /g/ﬂ\ ﬁ\\g\\ > edges <— level of correlation between = 0'2
with a number of cognitive states. In this work, we shed light on the Qj kJ neurophysiological signals (e.g. fMRI) .
mechanisms underlying synchronization patterns of oscillatory neural e Ll
activity. Specifically, we study cluster synchronization in networks of | N | N 107* 107% 107* 107" 10°
oscillators with Kuramoto dynamics, where multiple groups of oscillators Given a partition of the r_10des P = {P1,---,Pm}, we d_env.e condlt!ons 2
with identical phases coexist in a connected network. Each oscillator that guarantee exponential stability of the cluster synchronization manifold (a) (b)
models the activity of a brain region, and for arbitrary configurations we Sp={0 : 0;=0foralli,j € Py, k=1,...,m}  intra clust I' 8 « inter-clust :
derive conditions on the oscillators’ natural frequencies and Vyl%_az intra-c uls cf coup8|ng, i inter-ciuster _CC;L_IP m%
interconnection weights to enable the onset of cluster synchronization. '/ "o ?/\ ehxag =wp =1, w2 =0, and let B, a2 vary as Indicated.
/ ‘ Fig. 1(a) is a network of 4 Kuramoto oscillators. Fig. 1(b) shows that
stable manifold Sp, \J,J/ \&/‘j the approximate stability condition is much tighter than the condition
Model Motivation P ={P1, P2, P3}: — - - in Theorem 1. Our approximate conditions are able to tightly capture
_ - _ o g the onset of cluster synchronization.
Functional connectivity in the human brain stems from synchronization of 0 _— g

oscillatory neural activity in different brain regions.

Analytical Results Conclusion and Future Work

» Exact stability conditions: the cluster synchronization manifold is stable
when the intra-cluster weights are sufficiently larger than the inter-cluster
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Result based on perturbation theory of dynamical systems:

Theorem 1: sufficient condition on the network weights

i MY E weights, and also when the natural frequencies across different clusters are
- é The cluster synchronization manifold  intra-cluster couplings > 1 sufficiently heterogeneous.
T I T T; Sp is stable if: inter-cluster couplings » Approximate stability conditions: combine the independent mechanisms of
5 Icorrelaﬁon I > stability based on the network weights and oscillators’ natural frequencies,
- bw . v —1 Result based on Lyapunov's stability theory: and are shown to be considerably more accurate than our exact conditions.
time window cluster L cluster 2 cluster 3 Theorem 2: sufficient conditions on the natural frequencies » Future work: validation of the clustering mechanisms on different

datasets, prediction of clusters from connectivity information, data-driven

The synchronization manifold Sp is stable if the frequencies across T
control of cluster synchronization.

We assume that at each node of the structural brain network exists a different clusters are sufficiently different
community of excitatory and inhibitory neurons whose dynamical state is
in a regime of self-sustained oscillations.
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Sparsely connected heterogeneous Kuramoto oscillators

9,’ = Wi Z djj sin(0j — 9,)
JFi
0; is the phase of the I-th oscillator, w; is its natural frequency, and aj;
denotes the coupling strength between the j-th and the /-th oscillators.
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