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Objectives

1. Analyze functional connectivity by means of analytical tools [1].

2. Apply theory to real data by deriving approximate conditions that closely
capture the onset of cluster synchronization [2].

Abstract

Synchronization in the brain is a puzzling, yet ubiquitous, phenomenon.
For instance, synchronization patterns of neural activity are thought to be
biomarkers of neurological disorders, and synchronized regions correlate
with a number of cognitive states. In this work, we shed light on the
mechanisms underlying synchronization patterns of oscillatory neural
activity. Specifically, we study cluster synchronization in networks of
oscillators with Kuramoto dynamics, where multiple groups of oscillators
with identical phases coexist in a connected network. Each oscillator
models the activity of a brain region, and for arbitrary configurations we
derive conditions on the oscillators’ natural frequencies and
interconnection weights to enable the onset of cluster synchronization.

Model Motivation

Functional connectivity in the human brain stems from synchronization of
oscillatory neural activity in different brain regions.

We assume that at each node of the structural brain network exists a
community of excitatory and inhibitory neurons whose dynamical state is
in a regime of self-sustained oscillations.

Sparsely connected heterogeneous Kuramoto oscillators

θ̇i = ωi +
∑

j 6=i

aij sin(θj − θi)

θi is the phase of the i -th oscillator, ωi is its natural frequency, and aij
denotes the coupling strength between the j -th and the i -th oscillators.

Problem Setup
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The brain can be abstracted by means of a
network composed of nodes and edges:
I structural brain networks
. nodes← brain regions
. edges← white matter tracts that

connect the regions
I functional brain networks
. nodes← brain regions
. edges← level of correlation between

neurophysiological signals (e.g. fMRI)

Given a partition of the nodes P = {P1, . . . ,Pm}, we derive conditions
that guarantee exponential stability of the cluster synchronization manifold

SP = {θ : θi = θj for all i , j ∈ Pk, k = 1, . . . ,m}

stable manifold SP,
P = {P1,P2,P3}:
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Analytical Results

Result based on perturbation theory of dynamical systems:

Theorem 1: sufficient condition on the network weights

The cluster synchronization manifold
SP is stable if:

intra-cluster couplings

inter-cluster couplings
� 1

Result based on Lyapunov’s stability theory:

Theorem 2: sufficient conditions on the natural frequencies

The synchronization manifold SP is stable if the frequencies across
different clusters are sufficiently different
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intra-cluster weights

inter-cluster weights
<latexit sha1_base64="e2YZmPPXVZAn6AP4d159DR4LIOE=">AAACKnicbVDJSgNBFOyJW4xb1KOXxiB4McxIQI8RLx4jmAWSIfR03iRNeha636hhmO/x4q94yUEJXv0QOwuoiQUNRdV7vK7yYik02vbEyq2tb2xu5bcLO7t7+wfFw6OGjhLFoc4jGamWxzRIEUIdBUpoxQpY4EloesPbqd98BKVFFD7gKAY3YP1Q+IIzNFK3eNPxFeNpB+EZUxGiYhdcJhpB0ScQ/QHqLPtxQa263WLJLtsz0FXiLEiJLFDrFsedXsSTAELkkmndduwY3ZQpFFxCVugkGmLGh6wPbUNDFoB201nUjJ4ZpUf9SJkXIp2pvzdSFmg9CjwzGTAc6GVvKv7ntRP0r12TMU4QQj4/5CeSYkSnvdGeUMBRjgxhXAnzV8oHzHRnytAFU4KzHHmVNC7LjuH3lVK1sqgjT07IKTknDrkiVXJHaqROOHkhb+SdfFiv1tiaWJ/z0Zy12Dkmf2B9fQMg3qoV</latexit><latexit sha1_base64="e2YZmPPXVZAn6AP4d159DR4LIOE=">AAACKnicbVDJSgNBFOyJW4xb1KOXxiB4McxIQI8RLx4jmAWSIfR03iRNeha636hhmO/x4q94yUEJXv0QOwuoiQUNRdV7vK7yYik02vbEyq2tb2xu5bcLO7t7+wfFw6OGjhLFoc4jGamWxzRIEUIdBUpoxQpY4EloesPbqd98BKVFFD7gKAY3YP1Q+IIzNFK3eNPxFeNpB+EZUxGiYhdcJhpB0ScQ/QHqLPtxQa263WLJLtsz0FXiLEiJLFDrFsedXsSTAELkkmndduwY3ZQpFFxCVugkGmLGh6wPbUNDFoB201nUjJ4ZpUf9SJkXIp2pvzdSFmg9CjwzGTAc6GVvKv7ntRP0r12TMU4QQj4/5CeSYkSnvdGeUMBRjgxhXAnzV8oHzHRnytAFU4KzHHmVNC7LjuH3lVK1sqgjT07IKTknDrkiVXJHaqROOHkhb+SdfFiv1tiaWJ/z0Zy12Dkmf2B9fQMg3qoV</latexit><latexit sha1_base64="e2YZmPPXVZAn6AP4d159DR4LIOE=">AAACKnicbVDJSgNBFOyJW4xb1KOXxiB4McxIQI8RLx4jmAWSIfR03iRNeha636hhmO/x4q94yUEJXv0QOwuoiQUNRdV7vK7yYik02vbEyq2tb2xu5bcLO7t7+wfFw6OGjhLFoc4jGamWxzRIEUIdBUpoxQpY4EloesPbqd98BKVFFD7gKAY3YP1Q+IIzNFK3eNPxFeNpB+EZUxGiYhdcJhpB0ScQ/QHqLPtxQa263WLJLtsz0FXiLEiJLFDrFsedXsSTAELkkmndduwY3ZQpFFxCVugkGmLGh6wPbUNDFoB201nUjJ4ZpUf9SJkXIp2pvzdSFmg9CjwzGTAc6GVvKv7ntRP0r12TMU4QQj4/5CeSYkSnvdGeUMBRjgxhXAnzV8oHzHRnytAFU4KzHHmVNC7LjuH3lVK1sqgjT07IKTknDrkiVXJHaqROOHkhb+SdfFiv1tiaWJ/z0Zy12Dkmf2B9fQMg3qoV</latexit><latexit sha1_base64="e2YZmPPXVZAn6AP4d159DR4LIOE=">AAACKnicbVDJSgNBFOyJW4xb1KOXxiB4McxIQI8RLx4jmAWSIfR03iRNeha636hhmO/x4q94yUEJXv0QOwuoiQUNRdV7vK7yYik02vbEyq2tb2xu5bcLO7t7+wfFw6OGjhLFoc4jGamWxzRIEUIdBUpoxQpY4EloesPbqd98BKVFFD7gKAY3YP1Q+IIzNFK3eNPxFeNpB+EZUxGiYhdcJhpB0ScQ/QHqLPtxQa263WLJLtsz0FXiLEiJLFDrFsedXsSTAELkkmndduwY3ZQpFFxCVugkGmLGh6wPbUNDFoB201nUjJ4ZpUf9SJkXIp2pvzdSFmg9CjwzGTAc6GVvKv7ntRP0r12TMU4QQj4/5CeSYkSnvdGeUMBRjgxhXAnzV8oHzHRnytAFU4KzHHmVNC7LjuH3lVK1sqgjT07IKTknDrkiVXJHaqROOHkhb+SdfFiv1tiaWJ/z0Zy12Dkmf2B9fQMg3qoV</latexit>

unstable

provably
stable

numerically
stable

Tighter Approximate Results

Linearization of the network dynamics around cluster-synchronized
trajectories + small gain theorem = tight stability conditions.

Example
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α1, α2← intra-cluster coupling, β ← inter-cluster coupling
We fix α1 = ω1 = 1, ω2 = 8, and let β, α2 vary as indicated.

Fig. 1(a) is a network of 4 Kuramoto oscillators. Fig. 1(b) shows that
the approximate stability condition is much tighter than the condition
in Theorem 1. Our approximate conditions are able to tightly capture

the onset of cluster synchronization.

Conclusion and Future Work

I Exact stability conditions: the cluster synchronization manifold is stable
when the intra-cluster weights are sufficiently larger than the inter-cluster
weights, and also when the natural frequencies across different clusters are
sufficiently heterogeneous.

I Approximate stability conditions: combine the independent mechanisms of
stability based on the network weights and oscillators’ natural frequencies,
and are shown to be considerably more accurate than our exact conditions.

I Future work: validation of the clustering mechanisms on different
datasets, prediction of clusters from connectivity information, data-driven
control of cluster synchronization.
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