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ABSTRACT In this paper, we study representation learning for multi-task decision-making in non-stationary
environments. We consider the framework of sequential linear bandits, where the agent performs a series
of tasks drawn from different environments. The embeddings of tasks in each environment share a low-
dimensional feature extractor called representation, and representations are different across environments.
We propose an online algorithm that facilitates efficient decision-making by learning and transferring non-
stationary representations in an adaptive fashion. We prove that our algorithm significantly outperforms the
existing ones that treat tasks independently. We also conduct experiments using both synthetic and real data
to validate our theoretical insights and demonstrate the efficacy of our algorithm.

INDEX TERMS Linear bandits, non-stationary representations, representation learning.

I. INTRODUCTION
Humans are naturally endowed with the ability to learn and
transfer experience to later unseen tasks. The key mechanism
enabling such versatility is the abstraction of past experience
into a ‘basis set’ of simpler representations that can be used
to construct new strategies much more efficiently in future
complex environments [1], [2].

Inspired by this observation, recent years have witnessed
an increasing interest in the study of representation learn-
ing [3]. Representation learning is an important tool to
perform transfer learning, wherein common low-dimensional
features shared by tasks are inferred and generalized. It under-
lies major advances in a variety of fields including language
processing [4], drug discovery [5], and reinforcement learn-
ing [6]. Due to its promising seminal impact, there are many
recent theoretical studies on representation learning (e.g.,
see [7]–[11]). Yet, existing literature focuses on representation
learning for batch tasks and is restricted to static represen-
tations, thus relying on the working assumption that one
representation fits all tasks.

Most realistic decision-making scenarios feature two
challenges: i) the learning agent faces tasks that appear in
sequence, and ii) the agent may encounter distinct environ-
ments sequentially (see Fig. 1(a)), where learning a single
representation is no longer sufficient. Humans can perform ex-
traordinarily well in such scenarios because of their flexibility
to adapt to new environments. For instance, in the Wisconsin
Card Sorting Task (WCST, see Fig. 1(b)), participants are
asked to match a sequence of stimulus cards to one of the four
cards on the table according to some sorting rule—number,
shape, or color. The sorting rule changes every now and
then without informing the participants. Earlier studies have
shown that, in general, humans perform very well on this task
(e.g., [12]). By contrast, some classical learning algorithms,
such as the tabular-Q learning and the deep-Q learning,
struggle in WCST (as we show in Section VI). Unlike humans,
these algorithms can neither abstract succinct information
from experience nor adapt to new environments. This obser-
vation reveals the need to develop more human-like reasoning
and a more fluid approach in representation learning.
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FIGURE 1. Scenarios with non-stationary environments. (a) Changing
environments that the agent enters to perform tasks in sequence. (b) The
Wisconsin Card Sorting Task, a classical test to assess cognitive
capabilities that features a changing sorting rule; (c) A recommendation
system that recommends music to distinct users at different times of the
day based on the users’ tastes.

This paper takes an important step towards a deeper theoret-
ical understanding of representation learning in non-stationary
environments. As a prototypical sequential decision-making
scenario, we consider a series of linear bandits, where each
bandit represents a task, and the objective is to maximize
the cumulative reward by interacting with these tasks. More-
over, sequential tasks are drawn from different environments.
Importantly, tasks in the same environment share a low-
dimensional linear representation. Our modeling choice can
be used in a wide range of applications. For instance, con-
sider an adaptive system that recommends music to users of
a streaming platform. This system naturally fits our model:
non-stationary environments arise due to the fact that distinct
groups of active users can have different preferences at dif-
ferent times of the day (see Fig. 1(c)). The goal of this paper
is to analytically study representation learning in dynamical
environments akin to the above recommendation system.

Related Work: As a well-known model to capture the
exploration-exploitation dilemma in decision-making, multi-
armed bandits have attracted extensive attention (see [13] for
a survey). A variety of generalized bandit problems have been
investigated, where the situations with non-stationary reward
functions [14], restless arms [15], satisficing reward objec-
tives [16], heavy-tailed reward distributions [17], risk-averse
decision-makers [18], and multiple players [19] are consid-
ered. Distributed algorithms have also been proposed to tackle
bandit problems (e.g., see [20]–[27]). Recently, some studies
take into account the nature that sequentially collected data is
adaptive and propose novel algorithms to further improve the
performance [28], [29].

Besides the above work that focuses on single-task bandits,
some efforts have also been made to study multi-task prob-
lems. The core of multi-task bandits is to learn and transfer
interrelationships across multiple tasks, aiming to improve

decision-making efficiency compared to treating tasks inde-
pendently. Various types of interrelationships can be leveraged
to boost the learning agent’s performance, including the mean
of tasks drawn from a stationary distribution [30], [31],
similarity of task coefficients in linear bandits [32], and re-
semblance in contexts of arms in contextual bandits [33].
Recently, learning low-dimensional subspaces shared by task
coefficients has also been proven to improve performance in
simultaneous linear bandits [34]–[36].

Contribution: This paper seeks to develop methods to learn
and transfer non-stationary representations across sequential
bandits. In contrast to recent studies that play bandits simulta-
neously [34], [35], the sequential setting is more realistic, and
representation learning in this context is more challenging.
First, there does not exist a low-dimensional representation
that fits all bandits. The agent needs to adapt to dynamical
environments. Second, the agent does not know when environ-
ment changes happen, thus has no knowledge of the number of
tasks drawn from an environment. It is therefore challenging
to strike the balance between learning and transferring the
representation.

We propose an adaptive algorithm to overcome these chal-
lenges. Within each environment, the algorithm alternates
between representation exploration and exploitation, making
it flexible to different durations of the environments. Mean-
while, we incorporate a change-detection strategy into our
algorithm to adapt to non-stationary environments. We further
obtain a regret upper bound Õ(dr

√
mSN + Sr

√
N ), with d

being the task dimension, r the representation dimension, m
the number of environments, S the number of tasks, and N the
number of rounds for each task. Our regret significantly out-
performs the baseline �(Sd

√
N ) of algorithms treating tasks

independently. To demonstrate our theoretical results, we per-
form some experiments using synthetic data and LastFM data.
Simulation results also show that our algorithm considerably
outperforms classical reinforcement learning algorithms in
WCST.

Our preliminary work [37] presents limited theoretical
findings on representation learning in the sequential setting,
but we go well beyond that in this paper by considering
non-stationary environments and providing a comprehensive
account of the results. Further, we demonstrate the broad
applications of our results by presenting more experiments.

Organization: The problem setup is in Section II. In Sec-
tion III, we present an algorithm that performs representation
learning in a single environment. An environment-change-
detection algorithm is provided in Section IV. In Section V,
the main algorithm is presented by putting together Sec-
tions III and IV. Illustrative experiments are reported in
Section VI. Concluding remarks appear in Section VII.

Notation: Given a matrix A ∈ R
d×r , r < d , Span(A) de-

notes its column space, A⊥ ∈ R
d×(d−r) the orthonormal basis

of the complement of Span(A), [A]i its ith column, σi(A)
its ith largest singular value, and ‖A‖F its Frobenius norm.
We use ‖x‖ to denote the L2 norm if x is a vector and the

42 VOLUME 1, 2022



FIGURE 2. Sequential tasks in non-stationary environments. The tasks are
taken from different environments E1, . . . ,Em, forming subsequences
S1, . . . ,Sm. The tasks in each environment share a low-dimensional
representation (descried by Bk, k = 1, . . . , m). In each subsequence Sk ,
there are τk tasks, but τk ’s are not known a priori.

spectral norm if x is a matrix. Let A and B be two orthonormal
basis of two subspaces A,B ⊂ R

d×r . Define sin θ1(A,B) :=
sin(θ1) and sin θr (A,B) := sin(θr ), where θ1 and θr are
computed by the singular value decomposition A�B =
UDV� with D = diag(cos θ1, . . . , cos θr ) satisfying 0 ≤ θr ≤
· · · ≤ θ1 ≤ π

2 . Following [38], the distance between A and
B is defined as dist(A,B) = ‖diag(sin θ1, . . . , sin θr )‖F =
‖A�B⊥‖F . Given a positive number x, 	x
 denotes the small-
est integer that is greater than or equal to x. Given two
functions f , g : R+ → R

+, we write f (x) = O(g(x)) if there
is Mo > 0 and x0 > 0 such that f (x) ≤ Mog(x) for all x ≥
x0, and f (x) = Õ(g(x)) if f (x) = O(g(x) logk (x)). Also, we
denote f (x) = �(g(x)) if there is M� > 0 and x0 > 0 such
that f (x) ≥ M�g(x) for all x ≥ x0, and f (x) = �(g(x)) if
f (x) = O(g(x)) and f (x) = �(g(x)).

II. PROBLEM SETUP
In this paper, we consider the following multi-task sequential
linear bandits model:

yt = x�t θq(t ) + ηt , (1)

where xt ∈ A ⊆ R
d is the action taken by the agent at round

t , θq(t ) ∈ R
d is the bandit coefficient, and ηt is the additive

noise that is assumed to be zero-mean 1-sub-Gaussian, i.e.,
E[eληt ] ≤ exp( λ

2

2 ) for any λ > 0.
Notice that the coefficient vector θq(t ) is time-varying. We

assume that q(t ) = 	 t
N 
, where t = 1, 2, . . . , SN . That is, the

agent plays S bandits in sequence and interacts with each
bandit for N rounds.1 Then, the task sequence can be denoted
as S := {θ1, θ2, . . . , θS}.

We further assume that these tasks are drawn from m dif-
ferent environments, E1, E2, . . . , Em (each Ek is a set of tasks),
independent of the agent’s strategy. Specifically, the task se-
quence S can be divided into m consecutive subsequences (see
Fig. 2), i.e.,

S = {S1,S2, . . . ,Sm},
such that Sk ⊆ Ek for k = 1, 2, . . . ,m. Denote τk as the num-
ber of tasks in Sk ; it satisfies

∑m
i=k τk = S. We assume that, for

1We make this assumption for simplicity. Our results can be readily gener-
alized to the case where bandits are played for different rounds.

each environment Ek , there exists a matrix Bk ∈ R
d×rk with

orthonormal columns such that for any θ ∈ Ek ,

∃α ∈ R
rk : θ = Bkα.

This assumption is motivated by the fact that real-world tasks
often share low-dimensional structures, called representa-
tions [3]. As for the examples in Fig. 1, the representation can
describe the common preferences of a user group on a music
streaming platform or a certain sorting rule of the Wisconsin
Sorting Task. With a slight abuse of terminology, we refer to
Bk as the representation of the kth environment, k = 1, . . . ,m.
For simplicity, we assume that the representations have the
same dimension,2 i.e., rk = r for all k.

The goal is to maximize the cumulative reward
∑SN

t=1 yt by
interacting with the sequential bandits in the non-stationary
environments. The agent knows σ (t ),N, d , and r, but has no
knowledge of θi, Bk , and τk for any i = 1, . . . , S and k =
1, . . . ,m. To measure the agent’s performance in the T := SN
rounds, we introduce the (pseudo-)regret

RT =
T∑

t=1

(x∗t − xt )�θq(t ), (2)

where x∗t = arg maxx∈A x�θq(t ) is the optimal action that max-
imizes the reward at round t . Maximizing the cumulative
reward is then equivalent to minimizing the regret RT .

Following existing studies (e.g., see [39], [40]), we assume
that the following assumptions on the action set A and the task
coefficients θi hold throughout this paper.

Assumption 1 (Linear bandits): We assume that: (a) the ac-
tion set A is the ellipsoid of the form {x ∈ R

d : x�M−1x ≤ 1},
where M is a symmetric positive definite matrix, and (b) there
are positive constants θmin and θmax so that θmin ≤ ‖θs‖ ≤
θmax for all s ∈ {1, 2, . . . , S}.

Limitation of Independent Strategies: Under the stated as-
sumptions, previous work (e.g., see [39]–[41]) shows that the
regret of single-task bandits is lower bounded by �(d

√
d ).

Intuitively, if the sequential bandits S = {θ1, θ2, . . . , θS} are
independently played by those standards algorithms, the best
performance is optimally �(Sd

√
N ).

Potential Benefits of Representation Learning: In the
case of an oracle where the representations B1, . . . ,Bm

are known, it holds that θi = Bkαi for any θi ∈ S . Letting
zt = B�k xt , the d-dimensional bandit yt = x�t θi + ηt becomes
a r-dimensional one yt = z�t αi + ηt with αi ∈ R

r . Follow-
ing [39]–[41], one can show that the best performance of
an algorithm can be optimally �(Sr

√
N ), which indicates a

significant performance improvement compared to the stan-
dard algorithms if r � d . The reason is that learning to make
decisions is accomplished in much lower-dimensional sub-
spaces. The above observation implies potential benefits of
representation learning, that is, exploring and exploiting the

2Our results can be applied to the situation with heterogeneous rk by simply
letting r = maxk rk .
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Algorithm 1: Representation Exploration (RepE).
1: Input: N , N1, {a1, . . . , ad }.
2: for t = 1 : N1 do
3: Take the action xt = ai, i = (t − 1 mod d )+ 1
4: end for
5: Compute θ̂ = (XEX�E )−1XEYE

6: for t = N1 + 1 : N do
7: Take the action xt = arg maxx∈A x�θ̂
8: end for

Algorithm 2: Representation Transfer (RepT(B̂)).

1: Input: N , N2, B̂ ∈ R
d×r , {a1,

′ . . . , a′r}
2: for t = 1 : N2 do
3: Take the action xi = a′i, i = (t − 1 mod r)+ 1
4: end for
5: Compute α̂ = (B̂�XTX�T B̂)−1B̂�XTYT and θ̂ = B̂α̂
6: for t = N2 + 1 : N do
7: Take the action xt = arg maxx∈A x�θ̂
8: end for

Algorithm 3: SeqRepL.

1: Input: L, N1, N2, n. Initialize: P̂ = 0d×d .
2: for cycle n = 1, 2, . . . do
3: Rep Exploration: play L tasks in T using RepE,
4: P̂ = P̂ + θ̂iθ̂

�
i � fixed duration: L

5: B̂← the left-singular vectors associated with the
largest r singular values of Ŵ = 1

nL P̂
6: Rep Transfer: play nL tasks in Sτ using RepT(B̂)
7: � increasing duration: nL
8: end for

underlying low-dimensional structure between bandit tasks
can facilitate more efficient decision-making.

In our setting, representation learning has two main chal-
lenges. First, how can the agent explore and exploit repre-
sentation in the sequential setting? Particularly, striking the
balance between exploration and exploitation becomes more
challenging than the situation where bandits are played con-
currently [34], [35]. There is a trade-off between the need to
explore more sequential tasks (more data samples) to obtain
a more accurate representation estimate and the incentive to
exploit the learned representation for more efficient learning
and higher immediate rewards. Second, how can the agent
deal with environment changes? The remainder of this paper
aims to address these challenges.

III. REPRESENTATION LEARNING IN SEQUENTIAL
BANDITS: WITHIN-ENVIRONMENT POLICY
In this section, we show how the agent can improve its
performance by using representation learning in the sequen-
tial setting. The main result is the sequential representation

learning algorithm (SeqRepL, see Algorithm 3), a within-
environment policy that deals with individual segments of
tasks drawn from the same environment.

A. SEQUENTIAL REPRESENTATION LEARNING ALGORITHM
The key feature of SeqRepL is to balance representation ex-
ploration and exploitation without knowing the duration of
each environment. To show how SeqRepL works, we first
restrict our attention to a series of bandit tasks in this section:

T = {θ1, . . . , θτ }, (3)

where the number of tasks τ is unknown, and the representa-
tion shared by the tasks is B ∈ R

d×r .
SeqRepL operates in a cyclic manner, which is inspired

by the PEGE algorithm [39]. It alternates between two
sub-algorithms—representation exploration (RepE, see Algo-
rithm 1) and representation transfer (RepT, see Algorithm 2).
Both RepE and RepT are explore-then-commit (ETC) al-
gorithms, consisting of two stages, i.e., exploration and
commitment.

RepE: At the exploration stage of N1 rounds, d actions,
a1, . . . , ad , are repeatedly taken in sequence. These actions
can be arbitrarily chosen but need to be linearly independent
such that they span the action space defined by A. In this
paper, we simply let ai = λ0ei, where ei is the ith canonical
vector of Rd and λ0 > 0 is such that ai ∈ A for all i. Then,
the coefficient θ is estimated by the least-squares regression

θ̂ = (XEX�E )−1XEYE,

where XE = [x1, . . . , xN1 ] and YE = [y1, . . . , yN1 ]� respec-
tively collect the actions and rewards at this stage. At the
commitment stage, the greedy action xt = arg maxx∈A x�θ̂ is
taken for N − N1 times.

RepT: Different from RepE, RepT utilizes B̂ ∈ R
d×r as

a plug-in surrogate for the unknown representation B to
learn the coefficient θ . The exploration stage is accomplished
in the r-dimensional space Span(B̂). Specifically, r actions
a′1, . . . , a′r , are repeatedly taken for N2 rounds. These actions
can be arbitrarily chosen in Span(B̂) such that they are linearly
independent. In this paper, we let a′i = λ0[B̂]i, where λ0 > 0
is such that a′i ∈ A. To estimate θ , RepT computes α first. Ob-
serve that yt = x�t θ + ηt = x�t Bα + ηt . Then, α is estimated
with B̂ by the least-squares regression

α̂ = (B̂�XTX�T B̂)−1B̂�XTYT,

where XT = [x1, x2, . . . , xN2 ] and YT = [y1, y2, . . . , yN2 ]�.
Subsequently, θ is estimated by θ̂ = B̂α̂. Similar to RepE,
xt = arg maxx∈A x�θ̂ is taken at the commitment stage.

SeqRepL: As shown in Algorithm 3, there are two phases
in each cycle of SeqRepL. Specifically, in each cycle n ∈
{1, 2, . . . }, these phases are:

1) Representation Exploration Phase: L tasks (L is to be
designed) are played using RepE. Let Ŵ = 1

nL

∑
i θ̂iθ̂

�
i where

θ̂i’s are all the estimated coefficients obtained by RepE in all
the previous n cycles. Then, the representation B is estimated
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by performing the singular value decomposition (SVD) to Ŵ .
Specifically, B̂ takes the singular vectors associated with the
r largest singular values of Ŵ , i.e., B̂ = Û1 with Û1 ∈ R

d×r

taken from the SVD: Ŵ = [Û1, Û2]�̂V̂�.
2) Representation Transfer Phase: the latest representation

estimate B̂ is transferred. Specifically, nL sequential tasks are
played using RepT(B̂).

Notice that for any cycle n, L more tasks are played using
RepT than the previous (n− 1)th cycle. We next show that
this alternating scheme balances representation exploration
and exploitation excellently.

Assumption 2 (Task diversity): Suppose that there exist an
integer � and a constant ν > 0 such that any subsequence of
length � in the sequence in Eq. (3) satisfies σr (WsW�s /�) ≥
ν
r > 0 for any s, where Ws = [θs+1, . . . , θs+�].

This assumption states that the sequential tasks well
spread the entire r-dimensional subspace. It ensures that this
subspace can be reconstructed before all the bandit tasks
are played, which is crucial to allow for transfer learn-
ing in the sequential setting. A similar assumption is found
in [34], wherein bandits are played concurrently. Represen-
tation learning in the sequential setting is more challenging,
thus our assumption is slightly stronger.

Theorem 1 (Upper bound of SeqRepL): Let the agent play
the series of bandits in Eq. (3) using SeqRepL in Algorithm 3.
Select an L such that3 L = �(�), and let N1 = dr

√
N/L and

N2 = r
√

N . Then, the regret RτN of SepRepL satisfies

E[RτN ] = Õ

(
dr
√
τN + dr

λ2
0ν

2

√
τN + d�

r

√
τN + τ r

√
N

)
.

(4)

The fourth term in (4) is the regret incurred when transfer-
ring the oracle representation, and the first three terms include
the regret that results from representation exploration and
transferring the estimated representation with errors.

Remark 1 (Performance comparison): Recall that if the
same series of bandits are played using standard algorithms
that play bandits independently, e.g., UCB [41], PEGE [39],
and ETC [42], the best regret is optimally �(τd

√
N ). Com-

pared to these algorithms, SeqRepL can have better or worse
performance (i.e., “positive” or “negative” transfer), depend-
ing on the properties of the bandit tasks in (3):
� If τ � max{r2, r2

λ4
0ν

4 ,
�2

r2 } and d � r, using SeqRepL can

significantly improve the performance;4

� If τ � max{r2, r2

λ4
0ν

4 ,
�2

r2 }, the bound in (4) implies that

the cost of learning the representation can overwhelm

3Here, the exact knowledge of � is not required; instead, knowing the order
of � is sufficient. In practice, the assumption can be further relaxed. In Fig. 5,
we will show that a wide range of L can be chosen without knowing �, while
still guaranteeing the performance of our algorithms.

4We note that positive transfer can still occur in practice without satisfying
this inequality. In Figs. 4 and 5, we let τ = 400 for λ0 = 1, � = r = 3,
and ν ≈ 0.01, much smaller than 9× 108 required by the inequality here.
Nevertheless, our algorithms still outperform the standard ones significantly.

the possible benefits of transfer learning. Then, using
SeqRepL may result in a situation of negative transfer.

Our algorithm is particularly advantageous over the stan-
dard ones when there are a large number of tasks in the
sequence. Also, in sharp contrast to existing bandit algorithms
using representation learning (e.g., [34], [35]), our algorithm
requires no knowledge of τ . �

The following corollary provide an upper bound of Se-
qRepL if � in Assumption 2 is of the order of r2.

Corollary 1: Assume that � in Assumption 2 is of the order
of r, i.e., � = �(r2). Let N1 = d

√
rN and N2 = r

√
N . Then,

the regret of SepRepL for the sequential bandits in Eq. (3)
satisfies E[RτN ] = Õ(dr

√
τN + dr

λ2
0ν

2

√
τN + τ r

√
N ).

If 1
λ2

0ν
2 = �(1), the regret bound becomes E[RτN ] =

Õ(dr
√
τN + τ r

√
N ). For the series of bandits in Eq. (3),

it follows from [34] that the lower bound is �(d
√

rτN +
τ r
√

N ). Note that there is just a gap of Õ(
√

r) between our
upper bound and this lower bound.

B. PROOF OF THEOREM 1
We first provide some instrumental results, and we refer the
readers to Appendix A–C for their proofs.

Lemma 1 (Regret of RepE): Given a bandit task θ ∈ T , let
the agent play it using RepE in Algorithm 1 for N rounds.
Then, the regret RN of RepE satisfies E[RN ] = O(N1 +
N
N1

d2).
Lemma 2 (Regret of RepT): Given a bandit task θ ∈ T ,

assume that there exists B ∈ R
d×r with orthonormal columns

such that θ = Bα for some α ∈ R
r . Assume that an estimate

B̂ is known and satisfies ‖B̂�B⊥‖F ≤ ε. Let the agent play
this task for N rounds using RepT(B̂) in Algorithm 2, then the
regret satisfies E[RN ] = O(N2 + N

N2
r2 + Nε2).

Theorem 2 (Accuracy of learned representation): Let the
agent play the series of bandits in Eq. (3) using SeqRepL in
Algorithm 3. Then, for any cycle n, the estimate B̂ at the end
of the representation exploration phase satisfies

‖B̂�B⊥‖F ≤ Õ

(
dr

λ0ν

√
1

nLN1

)
, (5)

with probability at least 1− 1
kN1

.

Recall that ‖B̂�B⊥‖F measures the distance between B̂
and the true representation B. This distance decreases with n,
implying that B̂ becomes progressively more accurate as more
tasks are explored by the RepE algorithm.

Proof of Theorem 1: In the nth cycle of SepRepL, L tasks
are played in the representation exploration phase. Then, it
follows from Lemma 1 that the regret in this phase, denoted
as RRepE(n), satisfies ERRepE(n) = O(LN1 + L N

N1
d2). From

Theorem 2, we have

‖B̂�B⊥‖F ≤ Õ

(
dr

λ0ν

√
1

nLN1

)
.
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FIGURE 3. Illustration of environment change detection. (a) Along with the
environment change, the representation switches from B to B̄. (b) Probing
actions are randomly generated in the orthogonal complement of the
current representation.

Then, nL bandit tasks are played utilizing the RepT(B̂) algo-
rithm. It follows from Lemma 2 that the regret in the RepT
phase, denoted as RRepT(n), satisfies

E[RRepT(n)] = Õ

(
nLN2 + nL

N

N2
r2 + nLN

d2r2

λ2
0ν

2

1

nLN1

)

= Õ

(
nLN2 + nL

N

N2
r2 + d2r2

λ2
0ν

2

N

N1

)
.

Observe that there are at most L̄ = 	√2τ/L
 cycles in the se-
ries (3) since LL̄ + LL̄(L̄ + 1)/2 ≥ τ . Summing up the regret
in the representation exploration and exploitation phases in all
the cycles, we obtain

E[RτN ] =
L̄∑

n=1

(
RRepL(n)+ RRepT(n)

)

≤ Õ

(
L̄

(
LN1 + L

N

N1
d2

)

+
L̄∑

n=1

(
nLN2 + nL

N

N2
r2 + d2r2

λ2
0ν

2

N

N1

)⎞
⎠ .

Since N1 = dr
√

N/L, N2 = r
√

N and L̄ = 	√2τ/L
, we have
E[RτN ] = Õ(dr

√
τN + dr

λ2
0ν

2

√
τN + dL

r

√
Nτ + τ r

√
N ).

Then, (4) follows from L = �(r2). �

IV. ENVIRONMENT CHANGE DETECTION
To handle environment changes, we propose the representa-
tion change detection algorithm (RepCD, see Algorithm 4). It
is the key to endow the agent with adaptability.

A. REPRESENTATION CHANGE DETECTION ALGORITHM
To show how RepCD works, we consider the environment
change where the representation switches from B ∈ R

d×r to
B̄ ∈ R

d×r (see Fig. 3(a)). To detect this environment change,
we seek for the tasks that do not belong to the subspace
Span(B). To infer whether a task is an outlier to Span(B),
RepCD takes some probing actions and monitors the rewards.
The probing actions need to ensure: (1) when a task is not in
Span(B), it can be detected as an outlier with high probability;

Algorithm 4: Rep Change Detection (RepCD(B)).

1: Input: B ∈ R
d×r , ndet.

2: take ndet probing actions in Adet,
Ydet = [y1, . . . , yndet ]

�
3: if Ydet /∈ Cndet then
4: Rep Change indicator Idet = 1
5: end if

and (2) when a task is in Span(B), it can be falsely detected as
an outlier with low probability.

The key idea is to select probing actions in the orthogo-
nal complement Span(B⊥), which is illustrated in Fig. 3(b).
A task θ is in the subspace Span(B) if and only if B�⊥θ =
0. To generate an accurate test, all the directions de-
fined by the columns of B⊥ need to be covered by the
probing actions. A naive strategy is to choose d − r ac-
tions by simply exhausting the columns of B⊥, i.e., let
xi = λ0[B⊥]�i , i = 1, . . . , d − r, where λ0 > 0 is such that
λ0[B⊥]i ∈ A. Taking these actions, the agent is expected to
receive rewards satisfying yi = λ0[B⊥]�i θ + ηi = ηi if θ ∈
Span(B). If the agent receives some rewards that exceed the
noise level, the task θ is likely an outlier of the current
representation.

However, one may not need as many as d − r probing
actions if the environment change happens between two very
different representations. It is also possible that more than
d − r probing actions are required to detect a more subtle
environment change. Next, we show how to choose probing
actions by taking both of these situations into account.

First, let ndet be the number of probing actions (we will
show how to select ndet soon). Observe that any ndet can be
rewritten into ndet = k(d − r)+ n̄, where k can be 0, 1, 2 . . . .
The first k(d − r) probing actions simply take the actions
{xi = λ0[B⊥]i, i = 1, . . . , d − r} for k times. How to choose
the remainder of n̄ actions is more interesting.

We require all the d − r directions in Span(B⊥) to be
covered, which ensures that informed decisions are made for
representation change detection, especially when k = 0. To
do that, we use the idea of random projection [43]. First,
we generate a projection matrix P that projects from R

d−r

onto a random n̄-dimensional subspace uniformly distributed
in the Grassmann manifold G(d−r),n̄ (which consists of all
n̄-dimensional subspaces in R

d−r). One can obtain a matrix
Q ∈ R

(d−r)×n̄ with orthonormal columns that satisfies P =
QQ�. Then, the n̄ remaining actions are generated by taking
the columns out from the matrix M = B⊥Q.

Finally, we have completed selecting all the ndet probing
actions, which are included in the set

Adet := {Â, . . . Â︸ ︷︷ ︸
k

, λ0[M]1, . . . , λ0[M]n̄}, (6)

where Â := {λ0[B⊥]1, . . . , λ0[B⊥](d−r)}, and λ0 is a scalar
such that all the actions in Adet is in A.
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Let Ydet = [y1, . . . , yndet ]
� collect the rewards. We build a

confidence interval for Ydet, which is

Cdet =
{

Y ∈ R
ndet :

∣∣∣∣ 1√
ndet
‖Y ‖2 − 1

∣∣∣∣ ≤ ξdet

}
,

where ξdet is the detection threshold. For the task θ , if Ydet ∈
Cndet is observed, we say θ is not an outlier; if Ydet /∈ Cdet is
observed, we say θ is an outlier and, subsequently, there is an
environment change.

The next lemma shows how to select the detection threshold
ξdet and the number of probing actions ndet such that an outlier
can be detected with high probability.

Lemma 3 (Outlier detection: oracle representation): Con-
sider two representations B and B̄ and any task θ satisfying
θ = B̄α for some α. Assume that sin θr (B, B̄) = κ1. Let

ndet =
⌈

9(d−r) log(2S2N )
θ2

minλ
2
0κ

2
1

⌉
, ξdet =

√
log(2S2N )

4ndet
. (7)

Then, the task θ can be detected as an outlier to B by
RepCD(B) in Algorithm 4 with probability at least 1−
O( 1

S2N
).

Note that the distance of the two subspaces B and B̄ is
measured by the smallest angle sin θr (B, B̄). From Lemma 3,
it can be seen that fewer probing actions (smaller ndet) are
needed to detect a change between two representations with
a larger distance. Notice that, in Lemma 3, we have used
the oracle B in RepCD to detect outliers. However, the agent
usually only has access to an estimate B̂. The following lemma
states that if B̂ is sufficiently accurate, an outlier can still be
detected with high probability.

Lemma 4 (Outlier detection: estimated representation):
Consider the representation change in Lemma 3. Assume that
B̂, which satisfies ‖B̂�B⊥‖F ≤ ε ≤ 1

3κ1, is known. Let ndet

and ξdet be as in Eq. (7). Then, the task θ can be detected as
an outlier to B by RepCD(B̂) in Algorithm 4 with probability
at least 1− O( 1

S2N
).

V. THE MAIN ALGORITHM: CD-REPL
In this section, we provide the main results in this paper.

A. CD-REPL
We present the main algorithm, i.e., the change-detection rep-
resentation learning algorithm (CD-RepL). CD-RepL uses the
strategies that we have presented in the previous two sections
to perform representation learning and to adapt to changing
environments.

CD-RepL proceeds as follows. If a new environment is
detected by RepCD (the first environment is also regarded
as a new one), the agent first performs initial representation
exploration. In this period, bL sequential tasks are played and
an initial representation estimate B̂ is constructed. Then, using
this B̂, the agent starts to test every task to infer whether
there is an environment change using RepCD. If there is no
representation change, the agent plays the sequential bandits
using SeqRepL in Algorithm 3. Note that SeqRepL starts from
the (b+ 1)th cycle instead of the first one. Meanwhile, B̂ is

Algorithm 5: CD-RepL.

1: Input: b, L Initialize: B̂ = Id , P̂ = 0, the new Rep
indicator Idet = 1

2: if Idet = 1 (i.e., a new environment detected) then
3: reset P̂ = 0;

4: play bL tasks using RepE with N1 = dr
√

N
�

,

P̂ = P̂ + θ̂iθ
�
i ;

5: B̂← top r singular value decomposition of
Ŵ = 1

bL P̂;
6: set nst = b+ 1.
7: else
8: invoke RepCD, update Idet

9: end if
10: if Idet = 0 then
11: invoke SeqRepL that starts from the nstth cycle.
12: end if

constantly updated. Once detected a new environment, the
agent restarts the above processes.

Notice that the initial representation exploration plays an
important role in CD-RepL. It provides the agent with a rough
but acceptable estimate of the underlying representation such
that the agent can avoid false detection with high probability
(see Lemma 5). Moreover, after the initial exploration Se-
qRepL does not need to start from the first cycle because of the
initial estimate B̂. By starting from (b+ 1)th cycle, it avoids
the unnecessary exploration phases in the first b cycles. Let us
explain how to select b.

First, we choose the number of probing actions ndet and the
detection threshold ξdet since the choice of b depends on them.
In the previous section, they are chosen in the case of two
representations. For the case of m representations, we use the
same idea. Let κ := min{sin θr (Bi,Bi+1), i = 1, . . . ,m − 1}.
Then, we let

ndet =
⌈

9(d−r) log(2S2N )
θ2

minλ
2
0κ

2

⌉
, ξdet = 2

√
log(2S2N )

ndet
. (8)

Subsequently, we let

b =
⌈

9drθ2
maxndet

4ν2
√
�N (d−r) log(2S2N )

⌉
. (9)

The expressions in (8) and (9) are guided by the following
underlying ideas:

1) Fewer probing actions (ndet) and a larger detection
threshold (ξdet) are sufficient to detect representation changes
if the distance between representations are larger.

2) The choice of b needs to balance between the need
to explore more tasks such that the initial estimate of B̂ is
sufficiently accurate to avoid false detection and the incentive
to explore fewer tasks to incur less regret.

The following theorem provides an upper bound for CD-
RepL, which also justifies our choice of ndet, ξdet, and b.

Theorem 3 (Upper bound of CD-RepL): Let the agent play
the sequential bandits in S using the CD-RepL in Algorithm 5.
Let L = �(�), ndet and ξdet be as in Eq. (8), and b be as in
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Eq. (9). Then, the regret of the CD-RepL satisfies

E[RT ] =

Õ

⎛
⎜⎜⎜⎜⎝

m∑
i=1

(
dr
√
τiN + dr

λ2
0ν

2

√
τiN + d�

r

√
τiN

)
+ Sr
√

N

︸ ︷︷ ︸
(a)

+ Sndet + mbdr
√

N�︸ ︷︷ ︸
(b)

+ 2m︸︷︷︸
(c)

⎞
⎟⎠ . (10)

The regret incurred by CD-RepL can be decomposed into
three parts. Term (a) follows from Theorem 1, which is the re-
gret incurred by the SepRepL for each environment. Term (b)
is the regret incurred by the probing actions for each task and
the initial representation exploration for each environment.
Term (c) is due to unsuccessful detection and false detection.
Similar to Remark 1, whether CD-SepL outperforms the ex-
isting algorithms that treat bandits independently depends on
the relationship between the parameters d, r, �, λ0, ν, κ, τ, S
and m. To clarify the dependence, we provide the following
corollary.

Corollary 2: Assume that � = �(r), 1/(λ2
0ν

2) = �(1),
and κ satisfies

κ ≥ max {min{p1, p2},min{p3, p4}} , (11)

where

p1 = 3S
1
4 (d − r)

1
2
√

log(2S2N )

2d
1
2 r

1
2 N

1
4 θminλ0

,

p2 = 3(d − r)
1
2
√

log(2S2N )

2r
1
2 N

1
4 θminλ0

p3 = 3(d − r)
1
2 q

1
2 m

1
2

4r
1
2 N

1
4 S

1
4 νθminλ0

, p4 = 3d
1
2 (d − r)

1
2 q

1
2 m

1
2

4r
1
2 N

1
4 S

1
2 νθminλ0

.

Then, the regret of CD-RepL for the sequential tasks in S
satisfies

E[RSN ] = Õ
(∑m

i=1
dr
√
τiN + Sr

√
N
)
. (12)

The reason that the upper bound in Theorem 3 reduces to
the one in Eq. (12) is because Terms (b) and (c) in Eq. (10)
are dominated by Term (a) if κ is lower bounded as in
Eq. (11). Further, observing that

∑m
i=1 dr

√
τiN ≤ dr

√
SmN ,

the upper bound of the regret in Eq. (12) can be rewritten
into Õ(dr

√
mSN + Sr

√
N ). Recall that algorithms like UCB,

ETC, and PEGE (e.g., see [39]–[41]) that play the sequen-
tial bandits independently have a regret bound �(Sd

√
N ).

Under the assumption r � d , CD-RepL outperforms these
algorithms considerably if S/m > r2. In other words, our al-
gorithm is advantageous over the existing ones if: (a) the
dimension of linear representation is much smaller than the
task dimension; (b) the underlying representation does not
change too fast. Notice that if the agent plays the S tasks

simultaneously, the regret upper bound can be up to O(Sd
√

N )
even if the idea of representation learning is used. This is
because the entire set of the S tasks may not share a common
representation, although some of its subsets do (this point will
be demonstrated in Fig. 4 in Section VI).

Remark 2: We remark that the assumption of κ in Eq. (11)
is mild. The right-hand side of Eq. (11) becomes very small if
d � N . �

B. ANALYSIS OF THEOREM 3
Let us provide an instrumental result first, whose proof is in
Appendix E.

Lemma 5 (Probability of a false detection): Consider the
case where there is only one environment (i.e, m = 1) in the
task sequence {θ1, θ2, . . . , θS}, and the underlying represen-
tation is B ∈ R

d×r . Let the agent play this sequence of tasks
using CD-RepL. Let B̂ be the estimated representation after
the initial sample phase of bL tasks, the probability that a
task θ is detected by RepCD(B̂) as an outlier, denoted by
Pr[Ydet /∈ Cdet|θ = Bα], is less than O( 1

S2N
).

Proof of Theorem 3: Recall that τi sequential tasks are
taken from each set Si. Therefore, the representations change
after the (

∑p−1
i=1 τi )-th task is played, where p = 2, . . . ,m.

For the simplicity of nation, denote vi = (
∑i

j=1 τ j + 1), i =
1, . . . ,m − 1 as the instants when the environment switches
happen. Let μi be the detection time of the ith switch (i.e., the
μith task is detected as an outlier to the ith representation).
Therefore, the event Di = {μi = vi} is a good event, which
describes the situations that the ith representation switch is
detected immediately after it happens. The event Gi = {μi >

vi} denotes a late or an unsuccessful detection. The event
Fi = {μi < vi} denotes a false detection, which describes the
situation that an alarm is triggered when there is no represen-
tation switch.

First, we consider the case with two representations
(i.e., 1 representation switch), and the sequential tasks
{θ1, . . . , θτ1︸ ︷︷ ︸

B1

, θτ1+1, . . . , θτ1+τ2︸ ︷︷ ︸
B2

} are played using CD-RepL in

Algorithm 5. The regret of CD-RepL given D1 satisfies

E[R(τ1+τ2)N |D1] �∑2

i=1
dr
√
τiN + dr

λ2
0ν

2

√
τiN + d�

r

√
Nτi + τir

√
N︸ ︷︷ ︸

(a)

+ (τ1 + τ2)ndet︸ ︷︷ ︸
(b)

+ 2bdr
√

N�︸ ︷︷ ︸
(c)

. (13)

Note that term (a) is the regret incurred by SeqRepL in indi-
vidual subsequence, which follows from Theorem 1; term (b)
is incurred by the probing actions for each task; and term (c)
results from the initial representation exploration.

If the event G1 happens, the regret of CD-RepL satisfies

E[R(τ1+τ2 )N |G1] �
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(
dr
√
τ1N + dr

λ2
0ν

2

√
τ1N + d�

r

√
Nτ1 + τ1r

√
N

)
︸ ︷︷ ︸

(i)

(τ1 + τ2)ndet + bdr
√

N�︸ ︷︷ ︸
(ii)

+ τ2N︸︷︷︸
(iii)

. (14)

Here, the terms (i) and (ii) are the regret in the first subse-
quence, which follows from Eq. (13). If the representation
switch is detected after vi or not detected at all, the regret
for the second subsequence would be bounded by O(τ2N),
which results in the term (iii). This is intuitive since there are
τ2 tasks in the second subsequence and the regret of each task
is bounded by O(N ).

If the event F1 happens, the regret of CD-RepL satisfies

E[R(τ1+τ2 )N |F1] � (τ1 + τ2)N. (15)

From Lemma 3, it can be derived that Pr[D1] ≥ 1− O( 1
S2N

).
The event G1 means that D1 does not happen. It can be calcu-
lated that Pr[G1] ≤ O( 1

S2N
). The event F1 means that there

is at least 1 false detection in the first subsequence. From
Lemma 5, we know that the probability that a task is detected
as an outlier falsely is less than O( 1

S2N
). Then, the probability

of F1 can be calculated as

Pr[F1] ≤ 1−
(

1− O

(
1

S2N

))τ1

≤ O
( τ1

S2N

)
.

Putting together (13)–(15) and using the law of total expec-
tation, it can be computed that the regret of CD-RepL satisfies

E[R(τ1+τ2 )N ] �
2∑

i=1

(
dr
√
τiN + dr

λ2
0ν

2

√
τiN + d�

r

√
Nτi + τir

√
N

)

+ (τ1 + τ2)ndet + 2bdr
√

N�+ 2, (16)

where the last term on the right-hand side follows from τ2N ·
O( 1

S2n
)+ (τ1 + τ2)N · O( τ1

S2N
) ≤ O(2).

The upper bound in Eq. (16) can be generalized to the case
where there are m − 1 representation switches. In this case,
the upper bound of the regret of CD-RepL becomes

E[RSN ] �
m∑

i=1

(
dr
√
τiN + dr

λ2
0ν

2

√
τiN + d�

r

√
Nτi + τir

√
N

)

+
m∑

i=1

τindet + mbdr
√

N�+ 2(m − 1)

≤
m∑

i=1

(
dr
√
τiN + dr

λ2
0ν

2

√
τiN + d�

r

√
τiN

)
+Sr
√

N

+ Sndet + mbdr
√

N�+ 2m.

which completes the proof. �

FIGURE 4. Performance comparison between different algorithms using
synthetic data. Upper panels: regret; lower panels: distance between B̂ to
the changing true representation B. In (a), (b), and (c), environment
changes involving different representation distances are considered.
Shaded areas contain 10 random realizations of trials.

TABLE 1 Baselines.

VI. ILLUSTRATIVE EXAMPLES
We perform some experiments to validate our theoretical re-
sults and demonstrate the efficacy of our algorithm.

Synthetic Data: We first synthesize a set of data to demon-
strate our algorithm. Specifically, we consider a series of 1600
bandit tasks of dimension 20. There are four segments in this
sequence, and each has 400 tasks. In each segment, there
is a representation Bi ∈ R

20×3. The parameters in Assump-
tion 2 are � = 3 and ν = 0.01. The action set is the unit ball
defined by A = {x ∈ R

20 : ‖x‖ ≤ 1}. The noise in the reward-
generating function is assumed to be Gaussian N (0, 0.3).
Each task is played for 2000 rounds.

We compare our algorithm (CD-RepL) with four other al-
gorithms in Table 1. We consider several situations where
environment changes involve different representation dis-
tances (which is measured by sin θr (Bi,Bi+1), i = 1, 2, 3).

The Oracle outperforms CD-RepL as expected since the
latter needs to pay the cost of learning the representations and
detecting the environment changes.

From the upper panels in Fig. 4, CD-RepL always out-
performs Standard, consistent with our theoretical results.
Compared with Semi-oracle, CD-SeqL outperforms the exist-
ing algorithms that learn the single representation shared by
all the bandits. The reason is that this representation may not

5Such B always has no smaller dimension than those of within-environment
representations, and it may not exist if θi’s span the entire R

d . Note that
existing algorithms (e.g., [34], [35]) that play bandits simultaneously and
exploit representation learning cannot outperform the semi-oracle algorithm
since they need to estimate the representation.
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FIGURE 5. Performance of CD-SepL when L is set to different values. The
parameters are the same as in Fig. 4(b).

exist or have a high dimension even if the subsets of tasks have
low-dimensional representations.

Further, we disable the environment change detection of our
algorithm (i.e., Non-adaptive) and compare it with CD-RepL.
CD-RepL is particularly advantageous over Non-adaptive
when representations change drastically (see Fig. 4(a)); the
advantage decreases when it comes to more subtle changes
(see Fig. 4(b)). For sufficiently small changes, Non-adaptive
can even perform better (see Fig. 4(c)). This is because the
price of detecting the changes and re-learning each represen-
tation may overwhelm the potential benefits of transferring
the learned representations. However, CD-RepL have a much
more stable performance in all situations. The lower panels in
Fig. 4 illustrate that CD-SepL can detect environment changes
in different situations involving drastic or subtle representa-
tion changes, which is the key to endow CD-SepL with the
adaptability. By contrast, Non-adaptive can no longer learn
the true representations accurately after the first environment
change.

Recall that our theoretical results rely on fact that the order
of � in Assumption 2 is known since the number of tasks
in each representation cycle is set to be L = �(�). Yet, this
assumption is not required in practice. As shown in Fig. 5,
CD-RepL has similar performance for a wide range of L. This
implies that, even if � is unknown, one can always choose
an L that is likely larger than � without compromising the
performance much compared to the case of letting L = �.

LastFM: We use this dataset to demonstrate that our al-
gorithm can be used to design an adaptive recommendation
system as depicted in Fig. 1(b). This dataset is extracted from
the music streaming service Last.fm. It contains 1892 users,
17632 artists, and a listening count of user-artist pairs. We first
remove the artists that have fewer than 40 listeners and the
users who listened fewer than 10 artists, and obtain a matrix
M = [mi j] of size 411× 1565 with each row representing an
artists and each column a user. To generate arms and users,
we use the non-negative matrix factorization for M and keep
the first 20 latent features. In other words, M ≈ AU , where
A ∈ R

411×20 and U ∈ R
20×1565 are non-negative and describe

the features of the artists and users, respectively. From U ,
we select 3 groups of users that approximately lie in distinct
subspaces, consisting 11, 6, and 6 users, respectively. These
users form a series of bandits θ1, . . . , θ23 that have different
2-dimensional representations. We then recommend music

FIGURE 6. Performance comparison between different algorithms as
recommendation systems using LastFM data. Shaded areas contain 10
random realizations of trials.

items to these users for 200 times from the action set A that is
composed of the row vectors of A. The reward is generated
by yt = x�t θi + ηt , where xt ∈ A and ηt is Gaussian noise
N (0, 0.2). In Fig. 6 it can be observed that, by learning and
exploiting the representation shared by users and detecting
environment changes our algorithm outperforms the existing
ones that treat bandits independently.

Wisconsin Card Sorting Task (WCST): WCST, see
Fig. 1(b), is typically utilized to assess human abstraction and
shift of contexts [44]. Participants need to match a series of
stimulus cards to one of the four cards on the table based
on a sorting rule. For the stimulus card in Fig. 1(b), if the
rule is color, the correct sorting action is the third card. The
participants only receive feedback about whether their actions
are correct. For convenience, we assume that they receive
reward 1 for a correct action, and 0 otherwise. Participants
do not know the current sorting rule, thus need to infer it by
trial and error. The sorting rule changes every now and then,
which makes the task challenging.

WCST can actually be described by a bandit problem with
environment changes, where representations define the sort-
ing rules. Specifically, we use a matrix of size 4× 3, A =
[a1, a2, a3], to describe each card. Here, the vectors a1, a2

and a3 define the number, color, and shape, respectively,
and they take value from the 4-dimensional standard basis
{e1, e2, e3, e4}. The matrix A = [ei, e j, em] describes a card
that has the ith number, the jth color, and the mth shape of the
4 cards on the table. For instance, the stimulus card in Fig. 1(b)
can be described by the matrix A = [e2, e3, e1]. Further, we
use a vector B to describe the sorting rule, which takes value
from the basis {b1, b2, b3} of R3, representing the sorting rule
is number, color, and shape, respectively.

As a consequence, the reward of WCST is generated by
yt = x�t θt with θt = At Bσ (t ), where xt is the action that takes
value from the 4-dimensional standard basis {e1, e2, e3, e4},
At is the card at round t . Notice that Bσ (t ) that describes the
sorting rule can be regarded as the time-varying representation
in the reward function.

For standard reinforcement learning algorithms, such as
tabular-Q-learning and deep-Q-learning, WCST is challeng-
ing. There are in total 43 possible stimulus cards (4 colors,
4 numbers, 4 shapes), and for each stimulus card, there are
4 possible categories. To find the best policy, the standard
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FIGURE 7. Performance comparison for different algorithms in WCST,
where the sorting rule changes after ever 20 rounds. Shaded areas contain
10 realizations.

tabular-Q-learning needs many samples to construct the Q
table for a single sorting rule. It is then impossible for the
standard Q learning algorithm to find the optimal policy if
the sorting rule changes in a few trials (in Fig. 7 it changes
every 20 rounds). Being unaware of rule changes results in
an even worse performance. The deep-Q-learning algorithm6

does not perform better since, similarly, it always needs a large
number of samples to train the weights in the neural network
to find the optimal policy. It can be seen from Fig. 7 that these
two algorithms perform barely better than the one that takes a
random action at each round.

However, by describing the WCST as a linear bandit
model, we find that the problem can reduce to learning the
representation Bσ (t ), as the correct action can be computed
as x∗t = At Bt . The problem then reduces to learn the un-
derlying representation Bσ , a task that is much easier than
constructing the Q table or training the weights in a Deep-
Q network. Remarkably, one does not even need to learn
individual θt to construct Bσ . Instead, Bσ can be recovered
as Bσ = (

∑k
t=1 A�t xt x�t At )−1 ∑k

t=1 A�t xt yt immediately af-
ter

∑k
t=1 A�t xt x�t At becomes invertible. This indicates that

our idea in this paper can apply to more general situations.
As shown in Fig. 7, our algorithm significantly outper-
forms the other two, approaching the oracle that makes
correct choice at every round. This experiment suggests that
the ability to learn representations and shift attention [2],
[45] to adapt to environment changes facilitates efficient
learning.

VII. CONCLUDING REMARKS
In this paper, we exploit representation learning for decision-
making in non-stationary environments using the framework
of multi-task sequential linear bandits. We propose an ef-
ficient decision-making algorithm that learns and transfers
representations online. Employing a representation-change-
detection strategy, our algorithm also has the flexibility to
adapt to new environments. We further obtain an upper bound

6Here, we formalize each input state by a 3-dimensional vector (shape,
number, color)� ∈ {1, 2, 3, 4}3. The result in Fig. 7 considers a three layer
neural network with 3, 12, and 4 nodes in the input, hidden, and output layers,
respectively. Deeper or wider structures were also considered, but similar
performances were obtained.

for the algorithm, analytically showing that it significantly
outperforms the existing ones that treat tasks independently.
Moreover, we perform some experiments using synthetic data
to demonstrate our theoretical results. Using the LastFM data,
we show that our algorithm can be applied to designing adap-
tive recommendation systems. In the Wisconsin Card Sorting
Task, experimental results show that our algorithm con-
siderably outperforms some classic reinforcement learning
algorithms.

Directions of future work include nonlinear representation
learning, representation-based clustering, and task-tailored
representation generation from experience in bandit and re-
inforcement learning problems.

APPENDIX
A. PROOF OF LEMMA 1
Proof: Without loss of generality, we assume that N1 is a
multiple of d . Following similar steps as those in Lemma 3.4
of [39], we can obtain that after N1 steps of exploration

E[‖θ̂ − θ‖2] ≤ d2

N1
.

From [39], it holds that maxx∈A x�θ −maxx∈A x�θ̂ ≤
J‖θ − θ̂‖2/‖θ‖, where J is a constant that exists since the
action set A is an ellipsoid. Since ‖θ‖ ≥ θmin, it follows that

E

[
max
x∈A

x�θ −max
x∈A

x�θ̂
]
≤ J

E‖θ − θ̂‖2
θmin

≤ J
d2

N1θmin
. (17)

Further, at the exploration phase it holds with g(θ ) :=
arg maxx∈A x�θ that

g�(θ )θ − x�t θ ≤ max
x∈A

x�θ −max
x∈A

x�(−θ ) ≤ 2Jθmax.

Therefore, the total regret in N steps satisfies

E[RN ] ≤ 2JθmaxN1 + (N − N1)J
d2

N1θmin

= O

(
N1 + N

N1
d2

)
,

which completes the proof. �

B. PROOF OF LEMMA 2
Proof: Without loss of generality, we assume that N2 is a
multiple of r. Recall that, at the end of the exploration phase,
α̂ is computed by α̂ = (B̂�XT X�T B̂)−1B̂�XT YT . Since xt re-
peatedly takes actions from a′1, . . . , a′r , it holds that XT X�T =
N2AA�/r with A = [a′1, . . . , a′r]. Therefore, we have α̂ =
(N2B̂�AA�B̂/r)−1B̂�XT YT . Since a′i = λ0[B̂]i, it holds that
A = λ0B̂, which implies that (N2B̂�AA�B̂/r)−1 = r

λ2
0N2

Ir .

Consequently,

α̂ = r

λ2
0N2

B̂�XT YT .
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As YT = X�T Bα + η with η = [η1, . . . , ηN2 ]�, we have

α̂ = r

λ2
0N2

B̂�XT (X�T Bα + η)

= r

λ2
0N2

N2

r
B̂�AA�Bα + r

λ2
0N2

B̂�XT η

= B̂�Bα + r

λ2
0N2

B̂�XT η.

As θ̂ = B̂α̂ and θ = Bα, it follows that

θ̂ − θ = B̂α̂ − Bα = B̂B̂�Bα − Bα︸ ︷︷ ︸
s1

+ r

λ2
0N2

B̂B̂�XT η︸ ︷︷ ︸
s2

.

Next, we evaluate E‖θ̂ − θ‖2. Since Es�1 s2 = 0, it holds
that E‖θ̂ − θ‖2 ≤ E‖s1‖2 + E‖s2‖2.

Observe that Id = B̂B̂� + B̂⊥B̂�⊥. Thus, we have

E‖s1‖2 = ‖(Id − B̂⊥B̂�⊥)Bα − Bα‖2 = ‖B̂⊥B̂�⊥Bα‖2.
Because ‖B̂�⊥B‖F ≤ ε, we have

E‖s1‖2 ≤ ‖B̂⊥‖2 · ‖B̂�⊥B‖2F · ‖α‖2 ≤ με2, (18)

where μ > 0, which is such that ‖α‖2 ≤ μ, exists since θ =
Bα satisfies θmin ≤ θ ≤ θmax.

Now, we evaluate E‖s2‖2, which satisfies

E‖s2‖2 = r2

λ4
0N2

2

E(B̂B̂�XT η)�B̂B̂�XT η

= r2

λ4
0N2

2

N2∑
t=1

x�t B̂B̂�xtEη
2
t .

Since ηt is sub-Gaussian with variance proxy variable 1, we
have

E‖s2‖2 ≤ r2

λ4
0N2

2

N2∑
t=1

x�t B̂B̂�xt = r2

λ2
0N2

. (19)

Putting (18) and (19) together, we have E[‖θ̂ − θ‖2] ≤
r2

λ2
0N2
+ με2. Similar to (17), one can derive that

E[max
x∈A

x�θ −max
x∈A

x�θ̂ ] ≤ J
r2

θminλ
2
0N2
+ J

1

θmin
με2. (20)

For the commitment phase, there are N − N2 steps. Thus, the
overall regret satisfies

E[RN ] ≤ 2JθmaxN2 + (N − N2)E

(
max
x∈A

x�θ −max
x∈A

x�θ̂
)
.

Substituting (20) into the right side yields E[RN ] = O(N2 +
N
N2

r2 + Nε2), which completes the proof. �

C. PROOF OF THEOREM 2
Lemma 6 (Matrix Bernstein’s inequality [43]): Let
X1,X2, . . . ,Xk be independent zero-mean d × d symmetric

random matrices so that there exists M > 0 such that
‖Xi‖ ≤ M almost surely for all i = 1, 2, . . . , k. Then, for any
t ≥ 0, it holds that Pr[‖∑k

i=1 Xi‖ ≥ t] ≤ 2d exp( −2t2

σ 2+Mt/3
),

where σ 2 = ‖∑k
i=1 EXi‖.

Proof: Denote the nL tasks that are played using RepE
as θ1, θ2, . . . , θnL , and let k := nL. Then, Ŵ becomes
1
k

∑k
i=1 θ̂iθ̂

�
i . Let W = 1

k

∑k
i=1 θiθ

�
i be the true counterpart

of Ŵ . The proof is constructed in two steps. In Step 1, we use
Lemma 6 to estimate ‖Ŵ − (W + D)‖ with D being a scaled
identity matrix; in Step 2, we use the Davis-Kahan sin θ The-
orem [46] to evaluate the distance between the top-r singular
values of Ŵ and W + D, which is the distance between B̂ and
the true B (notice that W + D and W share the same singular
vectors).

Step 1: Let η := [η1, η2, . . . , ηN1 ]�, and it holds that YE =
X�E θi + η. It follows that

θ̂i = (XE X�E )−1XE (X�E θi + η) = θi + (XE X�E )−1XEη.

Some algebraic computations yield

θ̂iθ̂
�
i = θiθ

�
i + θiη

�X�E (XE X�E )−1 + (XE X�E )−1XEηθ
�
i

+ (XE X�E )−1XEηη
�X�E (XE X�E )−1.

Since ηi are independent zero mean 1-sub-Gaussian random
variables, the expectation of θ̂iθ̂

�
i can be computed as

Eθ̂iθ̂
�
i = θiθ

�
i + (XE X�E )−1XEEηη

�X�E (XE X�E )−1

= θiθ
�
i + (XE X�E )−1.

Since [a1, a2, . . . , ad ] be the standard basis of Rd , it holds that∑d
i=1 aia�i = Id . Without loss of generality, we consider N1 as

a multiple of d , then it follows that XE X�E = N1
d λ

2
0Id . There-

fore, we have (XE X�E )−1 = d
λ2

0N1
Id . Denote D := d

λ2
0N1

Id , then

it follows that

Eθ̂iθ̂
�
i = θiθ

�
i + D,

and

θ̂iθ̂
�
i = θiθ

�
i + D

(
θiη
�X�E + XEηθ

�
i

)︸ ︷︷ ︸
A

+D2 (
XEηη

�X�E
)︸ ︷︷ ︸

C

.

(21)

Define a set of new variables zi = 1
k θ̂iθ̂

�
i − 1

k (θiθ
�
i + D).

From (21), we have zi = 1
k (DA+ D2C − D). Then, the ex-

pectation of z2
i satisfies

Ez2
i =

1

k2
E

[
D2A2 + D4C2 + D2 + D3(AC +CA)

− 2D2A− 2D3C
]
, (22)

where the fact that D commutes with any matrix has been
used. Since D is deterministic, to compute Ez2

i , it suffices to
calculate EA2,EC2,E(AC +CA),EA, and EC.
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For EA2, it holds that

EA2 = E
(
θiη
�X�E

)2 + E
(
XEηθ

�
i

)2 + E
(
θiη
�X�E XEηθ

�
i

)
+ E

(
XEηθ

�
i θiη

�X�E
)

= 2
λ2

0N1

d
θiθ
�
i + N1λ

2
0θiθ

�
i + θ�i θi

λ2
0N1

d
Id .

For EC2, we have

EC2 = E
[
XEηη

�X�E XEηη
�X�E

]
= E

[
η�X�E XEη · XEηη

�X�E
] = E

[ N1∑
t=1

η4
t x�t xt xt x

�
t

]

= ψ4λ
2
0

( N1∑
t=1

xt x
�
t

)
= ψ4λ

2
0XE X�E =

ψ4λ
4
0N1

d
Id ,

where ψ4 = Eη4
t (ψ4 always exists since ηt is a sub-Gaussian

random variable). For E(AC +CA), it holds that

E(AC +CA) = E
[(
θiη
�X�E + XEηθ

�
i

)
XEηη

�X�E

+ XEηη
�X�E

(
θiη
�X�E + XEηθ

�
i

)]
= E

[
η�X�E XEη · θiη

�X�E
]

+ E
[
θ�i XEη · XEηη

�X�E
]

+ E
[
η�X�E θi · XEηη

�X�E
]

+ E
[
η�X�E XEη · XEηθ

�
i

]
= λ3

0ψ3N1

d
θi1�d +

λ3
0ψ3N1

d
diagθi

+ λ
3
0ψ3N1

d
diagθi +

λ3
0ψ3N1

d
1dθ
�
i

= λ3
0ψ3N1

d
(θi1�d + 1dθ

�
i )+ 2λ3

0ψ3N1

d
diagθi.

Notice that EA = 0. For EC, it holds that EC = EXηη�X� =
λ2

0N1
d Id .

Overall, substituting all the above terms into Eq. (22) we
have

Ez2
i =

1

k2

d2

λ4
0N2

1

[
2
λ2

0N1

d
θiθ
�
i + N1λ

2
0θiθ

�
i

+ θ�i θi
λ2

0N1

d
Id + D2ψ4λ

4
0N1

d
Id + Id + D

(
λ3

0ψ3N

d

· (θi1�d + 1dθ
�
i )+ 2λ3

0ψ3N

d
diagθi

)
− 2D

λ2
0N

d
Id

]

≤ d2

k2λ2
0N1

(
2

d
+ 1

)
θiθ
�
i + O

(
d2

k2λ4
0N2

1

Id

)
.

Let σ 2 = ‖∑k
i=1 Ez2

i ‖F , and it satisfies

σ 2 �
∥∥∥∥∥ d2

kλ2
0N1

1

k

k∑
i=1

θiθ
�
i

∥∥∥∥∥
F

≤ O

(
d2

kλ2
0N1

Trace(Wk )

)
.

Since for any θ ∈ T , it holds that θmin ≤ ‖θ‖ ≤ θmax with
θmin = �(1) and θmax = �(1), it follows that Trace(Wk ) =
�(1). Therefore, it holds that σ 2 ≤ O( d2

kλ2
0N1

).

Applying Lemma 6 with t = 2c1 log(2dkN1)+
c2

√
4σ 2 log(2dkN1) for sufficiently large c1, c2 > 0, we

have∥∥∥∥∥
k∑

i=1

zi

∥∥∥∥∥
F

� d

λ0

√
1

kN1

(√
log (kdN1)+ log (kdN1)

)
.

with probability at least 1− 1
kN1

.

Notice that
∑k

i=1 zi = Ŵ − (W + D). Let W ′ =W + D,
we have∥∥Ŵ −W ′

∥∥
F := ‖�‖F

� d

λ0

√
1

kN1

(√
log (kdN1)+ log (kdN1)

)
.

Step 2: From the Davis-Kahan sin θ Theorem, we have

‖B̂�B⊥‖F ≤
‖B̂�⊥(W −W ′)B‖

ω
≤ ‖Ŵ −W ′‖F

ω
, (23)

where ω = inf1≤i≤r,r< j≤d |λi(W ′)− λ j (Ŵ )|. From the
Weyl’s Theorem, |λi(W ′)− λi(Ŵ )| ≤ ‖Ŵ −W ′‖F =
‖∑k

j=1 z j‖F for any i = 1, . . . , d . Since λi(W ′) = 0 for

all i ≥ r + 1, it holds that |λi(Ŵ )| ≤ ‖�‖F for all i ≥ r + 1.
Recall that σr is the r-th largest eigenvalue of W , therefore
ω ≥ σk − ‖�‖F . From the Assumption 2, we know σr ≥ ν/r,
therefore we obtain

‖B̂�B⊥‖F � ‖�‖F
σr − ‖�‖F

� dr

λ0ν

√
1

nLN1

(√
log dnLN1 + log dnLN1

)
,

where k = nL have been used. The proof is complete. �

D. ANALYSIS OF LEMMAS 3 AND 4
Let us present some instrumental results first.

Lemma 7 (Random projection, Chap. 5, [43]): Let P be a
projection from R

n onto a random m-dimensional subspace
uniformly distributed in the Grassmann manifold Gn,m. Let
x ∈ R

n be a fixed point and β > 0. Then, with probability at
least 1− exp(−cβ2m), we have

(1− β )

√
m

n
‖x‖2 ≤ ‖Px‖2 ≤ (1+ β )

√
m

n
‖x‖2.

Lemma 8: Denote z = B�⊥θ . Let P be a projection ma-
trix from R

d−r onto a random m-dimensional subspace
uniformly distributed in the Grassmann manifold G(d−r),m.
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Then, it holds with probability at least 1− exp(−cβ2m) that
1
2

√
m

d−r ‖z‖2 ≤ ‖Pz‖2 ≤ 3
2

√
m

d−r ‖z‖2.
The proof of Lemma 8 directly follows from Lemma 7 by

letting β = 1/2.
Lemma 9 (Concentration of the norm, Chap. 3, [43]):

Suppose that X = [X1,X2, . . . ,Xn]� is a random vec-
tor, where X1, . . . ,Xn are independent δ-sub-Gaussian
random variable. Then, for any ξ > 0 it holds that

Pr[ 1√
n
|‖X‖2 − δ| ≥ ξ ] ≤ 2 exp(− cnξ2

K2 ), where c is an abso-
lute constant and K = maxi ‖Xi‖ψ2 is assumed K < 1.

We are now ready to prove Lemmas 3 and 4.
Proof of Lemma 3: We construct the proof by showing that

Ydet goes beyond Cdet with high probability when the task θ is
played by RepCD.

Denote ρ = ‖B�⊥θ‖, and from Lemma 8 we have
‖Q�B�⊥θ‖ = ‖QQ�B�⊥θ‖ ≥ 1

2ρ
√

n̄/(d − r) with probability
at least 1− exp(−cn̄/4) since QQ�B�⊥θ can be taken as pro-
jecting B�⊥θ onto the random subspace spanned by Q. The
reward vector Ydet satisfies Ydet = λ0G�B�⊥θ + η with G :=
[Id−r, . . . , Id−r︸ ︷︷ ︸

k

,Q]. It follows that

Pr [Ydet ∈ Cdet]

≤ Pr

[∣∣ 1√
ndet
‖λ0G�B�⊥θ + η‖ − 1

∣∣ ≤ ξdet

]

≤ Pr

[∣∣ 1√
ndet
‖η‖ − 1

∣∣≥ λ0ρ

2
√

d − r

√
1+ 3k(d − r)

ndet
− ξdet

]

≤ Pr

[∣∣ 1√
ndet
‖η‖ − 1

∣∣ ≥ λ0ρ

2
√

d − r
− ξdet

]
.

Observe that ‖B�⊥θ‖ = ‖B�⊥B̄α‖ ≥ σmin(B�⊥B̄)‖α‖. Since
σmin(B�⊥B̄) = sin θr (B, B̄) and θ ≥ θmin, we have

|B�⊥θ‖ ≥ sin θr (B, B̄)θmin = κ1θmin.

Therefore, we have ρ ≥ κ1θmin. From lemma 9, one can de-
rive that

Pr
[
Ydet ∈ Cndet

] ≤ 2 exp

⎛
⎝−cndet ( 1

2κ1λ0θmin

√
1

d−r − ξdet )2

K2

⎞
⎠.

Let nnet = 9(d−r) log(2S2N )
κ2

1 θ
2
minλ

2
0

and ξdet =
√

log(2S2N )
4ndet

. Then, it can

be calculated that Pr[Ydet ∈ Cdet] ≤ O( 1
S2N

), which means that
the outlier θ to B can be detected with probability at least 1−
O( 1

S2N
). The proof is complete. �

For Lemma 3, the only difference is that only an estimate
B̂ satisfying ‖B̂�⊥B‖ ≤ ε is known. It can be derived that
‖B̂�⊥θ‖ = ‖B�⊥B̄α‖ ≥ (κ1 − ε)θmin. Then, following similar
steps as those for Lemma 3, one can prove lemma 4.

E. PROOF OF LEMMA 5
Proof: It follows from the proof of Theorem 2 that, after the
initial bL tasks, the estimated representation B̂ satisfies

‖B̂�B⊥‖F � dr

λ0ν
√

b�N1

(√
log(db�N1)+ log(db�N1)

)
.

For the simplicity of notation, let q = √
log(db�N1)+

log(db�N1). For θ , there is α ∈ R
r such that

θ = Bα, which implies that Ydet = λ0G�B̂�⊥θ + η =
λ0G�B̂�⊥Bα + η, where G = [Id−r, . . . , Id−r,Q]. Since
‖Q�B̂�⊥θ‖ = ‖QQ�B̂�⊥θ‖, it follows from Lemma 8 that
‖Q�B̂�⊥θ‖ ≤ 3

2‖B̂�⊥θ‖
√

n̄/(d − r) with probability at least
1− exp(−cn̄/4). Denote ε = ‖B̂�⊥B‖F , and it can be observed
that ‖B̂�⊥θ‖ ≤ ‖B̂�⊥B‖F · ‖α‖ ≤ εθmax. Subsequently, since
ndet = k(d − r)+ n̄, it holds that

1√
ndet
‖Ydet‖2 ≤ 1√

ndet

(
λ0εθmax√

d − r

√
k(d − r)+ 9

4
n̄+ ‖η‖

)

≤ 3λ0εθmax

2
√

d − r
+ 1√

ndet
‖η‖ ≤ 1√

ndet
‖η‖ + 3drθmaxq

2ν
√

bLN1(d − r)︸ ︷︷ ︸
s

.

Then, from Lemma 9, we have

Pr[Ydet /∈ Cdet|θ = Bα] ≤ 2 exp

(
−cndet (ξdet − s)2

K2

)
.

Substituting (9) and (8) into the right-hand side yields Pr[θ /∈
Span(B̂)|θ = Bα] ≤ 1

S2N
given N1 = dr

√
N/�. �
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