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Abstract
Context. Large multi-site neuroimaging datasets have significantly advanced our quest to
understand brain-behavior relationships and to develop biomarkers of psychiatric and
neurodegenerative disorders. Yet, such data collections come at a cost, as the inevitable differences
across samples may lead to biased or erroneous conclusions. Objective.We aim to validate the
estimation of individual brain network dynamics fingerprints and appraise sources of variability in
large resting-state functional magnetic resonance imaging (rs-fMRI) datasets by providing a novel
point of view based on data-driven dynamical models. Approach. Previous work has investigated
this critical issue in terms of effects on static measures, such as functional connectivity and brain
parcellations. Here, we utilize dynamical models (hidden Markov models—HMM) to examine
how diverse scanning factors in multi-site fMRI recordings affect our ability to infer the brain’s
spatiotemporal wandering between large-scale networks of activity. Specifically, we leverage a
stable HMM trained on the Human Connectome Project (homogeneous) dataset, which we then
apply to an heterogeneous dataset of traveling subjects scanned under a multitude of conditions.
Main Results. Building upon this premise, we first replicate previous work on the emergence of
non-random sequences of brain states. We next highlight how these time-varying brain activity
patterns are robust subject-specific fingerprints. Finally, we suggest these fingerprints may be used
to assess which scanning factors induce high variability in the data. Significance. These results
demonstrate that we can (i) use large scale dataset to train models that can be then used to
interrogate subject-specific data, (ii) recover the unique trajectories of brain activity changes in
each individual, but also (iii) urge caution as our ability to infer such patterns is affected by how,
where and when we do so.

1. Introduction

Untangling the brain’s dynamics at rest is a cent-
ral aspect in the quest to reveal the mechanisms
underlying the spontaneous wandering of the mind
between well-established, large-scale networks of
neural activity [1–3]. The characterization of the
brain dynamics’ spatiotemporal organization into
networks has greatly benefited from the creation of
very large neuroimaging datasets [4, 5], such as the
Human Connectome Project (HCP) [6, 7], the UK

Biobank [8], and, in the context of neurodegener-
ative diseases, the Alzheimer’s Disease Neuroima-
ging Initiative [9]. Large neuroimaging datasets have,
furthermore, played a crucial role in the develop-
ment of novel biomarkers for psychiatric and neuro-
degenerative disorders [10–12]. Yet, appraising how
differences in physical parameters or scanning pro-
tocols affect the quality of these data—especially
fMRI recordings—remains an outstanding problem
[13–16]. For instance, imaging sequences are consid-
erably affected by site-dependent differences such as
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scanner drift over time, or maintenance routine [16].
Only few recent works have addressed the problem of
data variability in rs-fMRI data across sites [17–20],
while some others have proposed techniques to har-
monizemulti-site data [10, 12, 14, 16, 21, 22]. Despite
growing interest in the intricacies inherent to multi-
site data, this line of research is still in its infancy
(the first publication appeared in 2013 [23]). Further-
more, although the brain is a complex dynamical sys-
tem capable of exhibiting rich non-linear dynamics
[24, 25], most studies to date have relied on static
measures (e.g. functional connectivity); and little to
no attempts exist at exploring such issues from the
viewpoint of dynamical models.

Data-driven dynamical models are a promising
and powerful tool for the analysis and prediction
of the spatiotemporal organization of brain activity
[26–29]. These models allow us to harness the vast
amount of spurious information contained in large
datasets [30–32], capture the hierarchical organiza-
tion of brain activity [33], enhance brain-computer
interfaces [34, 35], andmay even be employed in clin-
ical settings [10, 36–38]. However, how the inference
and identification of dynamical models is affected by
different factors in multi-site data acquisition has yet
to be investigated. Additionally, dynamical models
could provide fine-grained insight into the extent of
the effect of these factors on the data.

One limitation of data-drivenmodels is that, gen-
erally, large amounts of data are needed to train
the model in the first place. Here, we avoid this
issue by employing two datasets. We leverage the
high number of subjects (nHCP>1000) with rs-fMRI
data available in the HCP dataset [6], to train a
stable and reliable hiddenMarkovmodel (HMM). An
HMM infers brain network dynamics from rs-fMRI
time series, where networks are probability dis-
tributions representing graphs. We then apply the
pretrained HMM to the smaller (nTS = 9) Traveling-
subject dataset, which consists of a novel, state-
of-the-art collection of rs-fMRI measurements of
nine healthy subjects who traveled to twelve dif-
ferent sites and were scanned under various con-
ditions (different sites, days, phase encoding, num-
ber of channels/coils, manufacturer, scanner; see
section 2 and supplementary table 1 (available online
at stacks.iop.org/JNE/18/026004/mmedia) for a full
list of scanning factors and attributes) [22]. This way,
we were able to infer subject-specific brain states
and investigate how the retrieval of brain state time
courses is affected by an array of scanning factors.
Training the model on the HCP data guarantees that
(i) the model is inferred on a large sample, made of
carefully collected and homogeneous data, and that
(ii) themodel is stable and does not over-fit on a data-
set of limited size. We illustrate the methodological
approach in figure 1.

Thus, we first utilize the trained HMM to val-
idate the findings on rs-fMRI fingerprints—robust

and reproducible quantitative signatures—reported
in previous work [28, 33, 39]. We then generalize
these findings by applying the HCP-trained HMM
to the Traveling-subject dataset. This important step
allows us to exploit the HMM to assess if, and to
what extent, mixed scanning factors affect subject-
specific fingerprints and, thus, rs-fMRI recordings.
We depart from previous work, which has mostly
relied on static functional connectivity/correlation
measures and smaller datasets, by exploiting dynam-
ical brain network collective states at a finer tem-
poral resolution. Altogether, this paper juxtaposes
complementary, yet contrasting, results with respect
to rs-fMRI data analysis: we confirm previous find-
ings reporting subject-specific fingerprints, but we
also shed light on the presence of factors that induce
variability in such fingerprints and, thus, the homo-
geneity of multi-site fMRI data collections and sub-
sequent inference from the viewpoint of dynamical
models.

2. Materials andmethods

2.1. Datasets
The two dataset used in this study are (i) the
HCP 1200-subject distribution (data available
at https://db.humanconnectome.org) and (ii)
the Traveling-subject dataset (data available at
https://bicr-resource.atr.jp/srpbsts/ after free regis-
tration). The former consists of rs-fMRI data from
N = 1206 healthy subjects (age 22–35) that were
scanned twice (two 15min runs) on two different
days, one week apart, on a Siemens 3 T Connectome-
Skyra scanner. For each subject, in total four 15min
runs of rs-fMRI time series data with a temporal res-
olution of 0.72 s and a spatial resolution of 2mm
isotropic were available. For our analysis, we used
time series from the 1003 subjects with four com-
plete scanning sessions. The HCP dataset provides
the required ethics and consent needed for study
and dissemination, such that no further institutional
review board (IRB) approval is required.

The Traveling-subject dataset consists of nine
healthy subjects (all men; age range 24–32; mean
age 27± 2.6 yr), who were all scanned at each of
the 12 sites, producing a total of 411 10min scan-
ning sessions [22]. Each participant underwent three
rs-fMRI sessions of 10min each at nine sites, two ses-
sions of 10min each at two sites (HKH and HUH),
and five cycles (morning, afternoon, following day,
following week, and following month) consisting of
three 10min sessions each at a single site (ATT). In
the latter situation, one participant underwent four
rather than five sessions at the ATT site because of
a poor physical condition. Thus, a total of 411 ses-
sions were conducted (8 participants × (3 × 9 +
2 × 2 + 5 × 3 × 1) + 1 participant × (3 × 9
+ 2 × 2 + 4 × 3 × 1)) (see supplementary table
1 for all the details on the scanning protocols). In
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Figure 1. Conceptual flow of the analysis and modeling approach. (a) rs-fMRI data from the HCP dataset, collected at the
Washington University in St. Louis (WUSTL) Connectome-Skyra scanner, were used to infer a hidden Markov model (HMM).
This model is described by a transition probability matrix, which encodes the probabilities of jumping from one state to another
at each time step. Following [33], 12 states were identified and the graph depicted in the figure illustrates the largest transition
probabilities (>0.1) in our model (see also supplementary figure 1). The states are color-coded in order to distinguish which set
of strongly connected states (metastate) they belong to. HMM decoding was then applied to the Traveling-subject dataset, in
which rs-fMRI data was collected from subjects travelling to different sites. The state time courses from the Traveling-subject
dataset were finally used to (1) validate the subject-specific fingerprints associated with states’ dwelling probabilities and the two
metastate structure put forth previously [33], and (2) analyze the impact of different factors, e.g. site, or scanner model, on fMRI
measurements. (b) To gauge how different factors influenced fMRI data collection, the state time courses obtained from the
HMM decoding procedure were compared within and across three different groups: SS (Same subject Same factor attribute), SD
(Same subject Different factor attributes), and DS (Different subjects Same factor attribute). In this panel, these three categories
are illustrated for the factor ‘site’, whose attributes consist of the different geographical locations.

total, there were two phase-encoding directions (pos-
terior to anterior (P → A) and anterior to pos-
terior (A→ P)), three MRI manufacturers (Siemens,
GE, and Philips), four numbers of channels per coil
(8, 12, 24, and 32), and seven scanner types (TimTrio,
Verio, Skyra, Spectra, MR750W, SignaHDxt, and
Achieva). All participants in all datasets provided
written informed consent. All recruitment proced-
ures and experimental protocols were approved by
the institutional review boards of the principal invest-
igators’ respective institutions (Advanced Telecom-
munications Research Institute International (ATR)
(approval numbers: 13–133, 14–133, 15–133, 16–
133, 17–133, and 18–133), Hiroshima University
(E-38), Kyoto Prefectural University of Medicine
(KPM) (RBMR-C- 1098), SWA (B-2014-019 and
UMIN000016134), the University of Tokyo (UTO)

Faculty of Medicine (3150), Kyoto University (C809
and R0027), and Yamaguchi University (H23-153
and H25-85)) and conducted in accordance with the
Declaration of Helsinki.

2.2. HiddenMarkovmodel
In this work, we utilized HMM(s) to capture the
dynamical evolution of brain states in subjects
scanned at rest. In neuroscience and neuroimaging,
HMMs are typically used to represent the stochastic
relationship between a finite number of hidden states
that underlie the brain’s complex dynamics, whose
evolution in time is captured by the measured data.
That is, HMM is a powerful technique that enables
the description of time series extracted from a sys-
tem of interest. The underlying assumption of this
class of models is that the observed time series of data
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can be explained by a discrete sequence of hidden
states, which must be finite in number. Additionally,
to describe a HMM, an observation model needs to
be chosen. We assume multivariate Gaussian obser-
vation model, so that, if xt denotes the data at time
step t, and st represents the state at time step t, we can
write, whenever state k is active,

xt|st ∼multivariate Gaussian(µk,Σk)

whereµk ∈ Rc is the vector of themean blood oxygen
level-dependent (BOLD) activation for each channel,
with c being the number of channels in the data, and
Σk ∈ Rc×c is the covariancematrix encoding the vari-
ances and covariances between channels. The trans-
itions between different brain states depend on which
state is active at the previous time step. Specific-
ally, the probability of a state being active at time t
depends on which state is active at time step t− 1.
This is encoded in the Transition Probability Mat-
rix (TPM)Θ, in which the entryΘij—the transition
probability—denotes the probability of state i becom-
ing active at the next time step if state j is currently
active. Formally, by denoting a probability with Pr,
we have that

Pr(st = i) =
∑
j

ΘijPr(st−1 = j)

For large datasets, it is possible to resort to
stochastic Variational Bayes inference to estimate
the posterior distribution of each state (µk,Σk), the
probability of each state being active at each time step,
and the transition probabilities between each pair of
states Θij [31]. Finally, notwithstanding the fact that
in this study the model has been inferred by con-
catenating all the subjects—thus implicitly defining
the brain states as the outcome of common brain
dynamics—the state time courses are subject-specific.
That is, the states are inferred at the group level, but
the time instants at which each brain state becomes
active is subjective and changes between and across
subjects.

2.3. Data preparation and HMM training
2.3.1. HCP dataset
Following [33], extensively preprocessed HCP ICA
time series were used for the model training. The
preprocessing followed the steps of [6, 40] and is
briefly described here. Spatial preprocessing used the
procedure described by [41]. Next, structured arti-
fact removal using ICA was followed by FMRIB’s
ICA-based X-noisefier (FIX) from the FMRIB Soft-
ware Library (FSL) [42], which removed more than
99%of the artifactual ICA components in the dataset.
Finally, the 50 dimensional extensively preprocessed
time series obtained after group spatial ICA are freely
available at www.humanconnectome.org/study/hcp-
young-adult/document/extensively-processed-fmri-
data-documentation.

2.3.2. Traveling-subject dataset
The dataset was obtained from https://bicr-
resource.atr.jp/srpbsts/. Hereafter, we describe the
preprocessing procedure that was originally reported
in [22]. Raw BOLD signals were preprocessed using
SPM8, implemented in MATLAB (R2016b; Math-
works, Natick, MA, USA), The first 10 s of each scan
data were discarded to account for T1 calibration.
Ensuing preprocessing steps included: slice-timing
correction, realignment, coregistration, segmenta-
tion of T1-weighted structural images, normalization
to Montreal Neurological Institute (MNI) space, and
spatial smoothing with an isotropic Gaussian ker-
nel of 6mm full-width at half-maximum. Thirty-six
noise parameters were included in a linear regres-
sion model to remove multiple sources of spurious
variance (e.g. six motion parameters, average signals
over the whole brain, white matter, and cerebrospinal
fluid) [43]. Time-series were band-pass filtered using
a first-order Butterworth filter (0.01 Hz–0.08 Hz)
to restrict the analysis to low-frequency fluctu-
ations, which are characteristic of rs-fMRI BOLD
activity [43]. Finally, to reduce the impact of head
motion, scrubbing was performed: framewise dis-
placement (FD) was calculated and volumes with FD
>0.5mm were removed [44]. Thus, 5.4% ± 10.6%
volumes (mean (approximately 13 volumes)± 1 SD)
were removed per 10 min of rs-fMRI scanning (240
volumes). If the number of volumes removed after
scrubbing exceeded the average of –3 SD across par-
ticipants, the sessions were excluded from the ana-
lysis. As a result, 14 sessions were removed from the
dataset.

Before combining the HCP time series and the
Traveling-subject time series for the model infer-
ence, we matched the temporal resolution of the two
datasets. Specifically, for all results reported in the
main text, the Traveling-subject time series were up-
sampled in order to match the same repetition time
as the HCP data (from TR= 2.5 s to TR= 0.72 s). We
also down-sampled the HCP data from TR = 0.72 s
to TR = 2.5 s to match the Traveling-subject repe-
tition time. However, the model inferred on HCP
down-sampled ICA time-series was not satisfactory
(see below). Therefore, we have chosen to re-sample
the Traveling-subject data instead of down-sampling
the HCP data.

TheHMMinferencewas performed on 50 dimen-
sional standardized ICA time series (0 mean and
unitary standard deviation) concatenated along
the time direction. To concatenate HCP rs-fMRI
data and the ones from the Traveling-subject data-
set, we proceeded as follows. First, we matched the
voxel coordinates of the Traveling-subject data with
the group average spatial maps from the group-
ICA decomposition of the HCP time series. These
spatial maps were extracted from the group aver-
age analysis across all the subjects of the S1200
release and are available on the HCP website:
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www.humanconnectome.org/study/hcp-young-adult
/document/extensively-processed-fmri-data-docume
ntation. Because the spatial maps are in a gray-
ordinate CIFTI format [41], we extracted the xyz
coordinates in a standard stereotaxic space MNI152
by using a mid-thickness surface file for the surface
vertices and the coordinate transformation matrix
included in the CIFTI file. Next, we extracted the
time series from the Traveling-subject data corres-
ponding to the same xyz coordinates of the afore-
mentioned spatial map in Matlab by using the ROI
Signal Extractor provided by the toolbox DPABI [45].
Finally, the HCP group average spatial map allowed
us to obtain the estimated 50 dimensional ICs for
the Traveling-subject data from the extracted time
series. To note, once the Traveling-subject rs-fMRI
time series were reduced to 50 ICs, they matched
the spatial dimension of the HCP data used to infer
the HMM in [33]. Finally, to train our HMM, we
used the publicly available toolbox HMM-MAR (https://
github.com/OHBA-analysis/HMM-MAR) [46]. We
inferredN = 50models with 12 states (the number of
states was chosen based on previous work [33]) from
random initializations, multiple priors, and different
combinations of the available datasets. Specifically,
we inferredN1200 = 28models inferred on time series
from the 1200 subject HCP release only with random
priors, N820 = 14 models inferred on the 820 sub-
ject HCP release (a subset of the 1200 subject release,
which was used in the original work on the HMM
derived hierarchical organization of brain states [33])
with random priors, and NTS = 8 models inferred
on the nine subjects of the Traveling-subject data-
set using the best model inferred from HCP data
only one as a prior, so thatN1200 +N820 +NTS = 50).
The selection of the best model (described below in
detail) took into account both classical model evalu-
ation methods and the definition of the metrics used
in this study.

2.4. FO correlationmatrix and fingerprints
computation
By applying (i.e. decoding) anHMM to a dataset with
multiple subjects, we obtained the state time courses
for each subject, from which it is possible to compute
the vector of the fractional occupancy (FO) of every
state for each subject. Stacking such vectors in a mat-
rix yielded the FOMatrixR, which is a (no. of subjects)
× (no. of states) matrix that encodes state dynamics
similarities across subjects. Each element Rij of this
matrix denotes the fraction of time spent by subject i
in state j. Further, by taking the pairwise correlation
of the columns of the FO Matrix R, we obtained the
(no. of states)× (no. of states) FO Correlation Matrix

C= corr(R:,k,R:,ℓ),

where R:,k denotes the column vector of the FO of all
subjects for the kth state. This matrix captured the

overall organization of brain dynamics across states,
and its entries quantified the affinity between the
FOs of each pair of states across all subjects. In other
words, the FO correlationmatrix highlighted the sim-
ilarities and dissimilarities between brain states, and
encoded the temporal characteristics of brain net-
work dynamics. The organization of the FO correla-
tionmatrix revealed (both by visual inspection and by
numerical investigation) the emergence of two groups
of states, known as metastates. Metastates are distinct
sets of functional network states that the brain has a
propensity to cycle within, and have been shown to
hierarchically group brain states into a 2-metastate
structure [33].

We made use of the information encoded in
the FO correlation matrix to calculate two different
subject-specific metrics in the Traveling-subject data
that were key in this study: theMetastate Profile (MP)
Differences and the FO correlations. Loosely speak-
ing, the former provided the difference between the
time spent in the two distinctmetastates that emerged
in ourmodel, compatiblywith previous findings [33].
The latter provided the pairwise correlation between
the FO vectors of different scanning runs. To derive
thesemetrics, we first construct theMPmatrix, whose
entry (i,k) represents the FO of the second metastate
(states 6–12) minus the FO of the first metastate
(states 1–4) for the subject i during the scanning ses-
sion k. We excluded state 5 from our analysis as it was
uncorrelated from the other states, had the highest
variance, and was previously shown to be associated
with headmotion in the scanner [33]. Formally, given
the FO Matrix R for the run k, MPi,k is computed as
follows:

MPi,k =
12∑
j=6

Ri,j −
4∑

j=1

Ri,j.

Then, the MP Difference between run k1 for subject
i1 and run k2 for subject i2 reads as

MP Difference= |MPi1,k1 −MPi2,k2 |.

Instead, the FO Correlation between run k1 for sub-
ject i1 and run k2 for subject i2 is defined as

FO Correlation= corr(FOi1,k1 ,FOi2,k2),

where FOi,k denotes the 11-dimensional column vec-
tor of the FOs of all 12 states minus state 5 for subject
i and run k.

It is worth noting that exploiting and comparing
the two metrics defined above gave us a remarkable
advantage with respect to utilizing only the model’s
TPM. Namely, because of the stochastic nature of
the model inference, we were able to avoid the non-
uniqueness issue of the TPM and, at the same time,
to reliably capture the temporal characteristics of the
state time courses. In fact, due to the availability of
numerous scanning sessions for each subject, both
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metrics could be computed not only across different
subjects, but also at the individual level. We capital-
ized on the robustness of the HMM model inferred
on HCP homogeneous data to reveal, through MP
Differences and FO Correlations, temporal inform-
ation of brain state time series in the heterogeneous
Traveling-subject dataset. These metrics allowed us
to perform a richer analysis rather than simply limit-
ing ourselves to the study of a model’s TPM—in this
context it was one single matrix valid for all subjects
(figure 1(a)).

2.5. Model selection
To select the model that best fit the data, we com-
puted the free energy for each of the 50 different
models that were inferred. The free energy provides
a bound on the log-evidence for any model [47], and
can be derived as the sum of the model average log-
likelihood, the negative entropy, and the Kullback–
Leibler divergence [48]. Because the data sets have dif-
ferent sizes (we usedHCP1200, HCP820, and Traveling-
subject only), we corrected the free energy according
to the size of the dataset used for the model inference
in order to compare different models fairly. Next, we
ranked theN = 50models inferred in this study based
on their free energy, and chose the one minimizing
this quantity.

Based on previous findings [33], and because
the definition of MP Difference strongly rely on the
hierarchical structure of the inferred states, we also
verified that the selected model presented a suffi-
ciently marked two metastate structure. To take this
topological notion into account, we computed for
each model the Euclidean distance from the ideal
FO Correlation Matrix (supplementary figure 2),
which gauged how well the metastates emerged in the
model’s FO Correlation Matrix. Mathematically, this
distance is defined as:

di =

∥∥∥∥∥∥Ci −

 14×4 04×1 −14×7

01×4 1 01×7

−17×4 07×1 17×7

∥∥∥∥∥∥
for i= 1, . . . ,50, where Ci is the FO Correlation Mat-
rix of model i, 1 is a matrix of all ones, 0 is a zero
matrix, and ∥ · ∥ denotes the Euclidean norm. The
model that we have used in this study was not only
the one with the lowest free energy, but also the one
with and the smallest di. Thus, our model fit the data
the best and simultaneously embodied a pronounced
two metastate structure.

Finally, to verify the robustness of our model
when applied to time series other than the HCP data,
we applied the HCP-trained HMM to autoregress-
ive data (see supplementary text and supplementary
figure 3). We found that this control analysis yielded
state time courses that spendmost of the time on state
5. Unsurprisingly, state 5 was not only uncorrelated to
all other states in our model, but had previously been
found to be associated to motion artifacts in HCP

data [33]. This result substantiates the robustness of
our results in regards to application of our HCP-
trained model to the Traveling-subject time series.

2.6. Subject classification using brain dynamics
fingerprints
To support our findings, and the robustness of
the subject-specific fingerprints to data heterogen-
eity, we used machine learning on these fingerprints
to perform subject-level classification. Specifically,
individual subjects from the Traveling-subject data-
set were classified based on their Metastate Profiles
and Fractional Occupancies. We detail the procedure
hereafter.

For each scanning factor, we trained a logistic
regression classifier—which minimizes the cross-
entropy loss—with the scikit-learn machine
learning package [49] in Python 3 with the follow-
ing parameters: default L2 penalty, default L-BFGS-B
algorithm [50], and ‘multi_class’ option set to ‘mul-
tinomial’. The classification task was repeated mul-
tiple times by splitting the data into different train-
ing and validation sets as follows. We repeated the
training and validation of the linear regression clas-
sifier for each factor attribute (e.g. for the scanner
parameter, we repeated the procedure for each scan-
ner model) by performing a leave-one-attribute-out
cross-validation: we chose as validation set all the
samples (i.e. fingerprints) belonging to one factor
attribute, andwe used as training set all the remaining
samples. This analysis allowed us to (i) compare the
classification based on brain dynamics fingerprints in
the presence of different scanning protocols and het-
erogeneous data with baseline chance level, and (ii)
investigate which scanning factors tend to affect data
collections more than others.

3. Results

3.1. Test-retest reliability of brain dynamics
estimation
We first inferred the HMM by leveraging the large
amount of rs-fMRI data in the HCP dataset. Due
to the stochastic nature of the HMM inference—
which is based on the probabilistic process of Bayesian
inference—the results might vary at each new model
training. Thus, we inferred multiple models and
selected for further analyses the one with the best
fit. We show in figure 2 the HMM selected and
employed in this work, which is themodel that ranked
best with respect to free energy, displayed the smal-
lest distance from the ideal FO Correlation Matrix,
and was trained solely on HCP time series (see also
supplementary figure 4). Further details andmatrices
of notable models different from the best one can be
found in supplementary figures 5–6.

Given the stochastic nature of the Variational
Bayes approach used to infer the HMM [31], it was
unlikely that one would obtain an exact replica of the
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Figure 2. HCP-trained HMM. (a) Transition Probability Matrix. The emergence of the two metastates can be recognized by
simple visual inspection, and was confirmed by a community-detection algorithm. (b) FO correlation matrix. The two metastates
are clearly delineated, with state 5 being mostly uncorrelated from all other states [33]. The state FOs are highly correlated (person
correlation>0.8) within the two metastates across subjects.

model originally reported in [33]. However, as dis-
played in figure 2(b) and supplementary figure 6, all
models showed a clear two metastate structure, val-
idating the claims that resting-state brain dynamics
tend to be hierarchically organized in two larger sets
of states (one associated with higher-order cognition,
and the other one with sensorimotor and perceptual
states, as originally reported in [33]). Moreover, a
visual inspection of the TPM matrix alone sugges-
ted the emergence of two groups of states that tended
to be more (statistically) connected. We confirmed
this hypothesis by employing the generalized Louv-
ain algorithm [51] for the discovery of communities
in networks.

To note, we also used the HCP-derived TPM as
a prior to train an HMM on the Traveling-subject
dataset alone. This choice of prior ensured that the
inference started from established initial conditions
before dealing with the small size of the Traveling-
subject dataset. Surprisingly, although the number of
subjects in the Traveling-subject dataset was much
smaller than the number of subjects in the HCP data-
set, the two metastate structure still emerged in the
model’s matrices (supplementary figure 6(d)), as also
confirmed by the generalized Louvain algorithm. This
result highlighted that, notwithstanding mixed scan-
ning protocols and small sample, themetastates could
be retrieved and unfold as a robust feature of resting-
state data.

3.2. Metastate profiles and fractional occupancies
are robust subject-specific fingerprints
Previous findings reported that brain dynamics is
subject-specific and nonrandom. To extend this
notion, we applied the best-fitting, HCP-trained
HMM, to the Traveling-subject dataset, obtaining the
state time courses for each 10min scanning session.
Next, from each individual’s state time courses, we
calculated the MP Differences and the FO Correl-
ations. We summarize the derivation of these two
measures in figure 3(a). To note, here we use the
notation subject i1 and i2 for a general case, but this

naturally applies to two different scans belonging to
the same subject (i.e. within-subject comparison).

Before delving into the main analyses of the
Traveling-subject dataset, we considered the consist-
ency of these two measures of brain activity dynam-
ics both in the HCP and the Traveling-subjects data-
sets. In both datasets, there were multiple scans per
subject (mHCP = 4 and mTS>42, respectively), allow-
ing us to compute MP Differences and FO Correl-
ations within subjects. Given the high homogeneity
of the HCP dataset, we expected this to provide a
lower bound in terms of dissimilarity between scans
belonging to a given subject. Notwithstanding inher-
ent differences (2-sample Kolmogorov-Smirnov test,
k= 0.19 and p<10−3 for MP Differences, k= 0.329
and p<10−3 for FO Correlations), both MP Differ-
ences and FO Correlations distributions displayed
remarkable similarity in the distributions of MP Dif-
ferences (peak = 0.06 for HCP data and peak = 0.06
for TS data, figure 3(b) left plot) and FO correlations
(peak= 0.9 forHCPdata and peak= 0.93 for TS data,
figure 3(b) right plot). Moreover, the interquartile
range also had large overlap, particularly for MP Dif-
ferences (figure 3(b) legend). These results provided
initial evidence for the presence of—and our ability
to infer—subject-specific brain dynamics patterns.

We next interrogated in detail the Traveling-
subject dataset. Each scanning factor considered
in this study had multiple distinct attributes. For
instance, for the factor scanner manufacturer there
were sessions recorded through scanners produced
by three different manufacturers (Siemens, Philips,
and General Electric, see also supplementary table 1).
We computed the values of MP Differences and FO
Correlations for all the runs of the same subject
and the same factor attribute (SS), the same sub-
ject and different factor attributes (SD), and dif-
ferent subjects but the same factor attribute (DS).
A 1-way ANOVA on the median MP Differences
(figure 4(a)), and on the median FO Correlations
(figure 4(b)), resulted in a highly significant main
effect of comparison group (SS, SD, DS), for both
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Figure 3.Metastate Profile Differences and FO Correlations computation, and within-subject comparison. (a) Schematic
illustrating the computation of the MP Differences and FO Correlations. To note, subject i1 and i2 can mean both the same
subject’s data but from different scans, or different subjects. (b) Within-subject MP Differences and FO Correlations in the HCP
(in red) and the Traveling-subject (TS, in purple) datasets. We report hereafter the median and interquartile range. For MP
Differences (left panel) in the HCP data: median= 0.13 [0.06 0.22]; for MP Differences in the TS data: median= 0.19 [0.09
0.35]. For the FO Correlations (right panel) in the HCP data: median= 0.74 [0.22 0.89]; for FO Correlations in the TS data
median= 0.88 [0.78 0.94].

Figure 4.Metastate Profile Differences and FO Correlations within vs between subjects, across scanning factors. (a)–(b) The
average median of the MP Differences and FO Correlations for the three sets SS (Same subject Same factor attribute), SD (Same
subject Different factor attributes), and DS (Different subjects Same factor attribute). MP Differences are the absolute difference
between the Metastate Profiles of different runs, while FO Correlations are the pairwise correlation between the Fractional
Occupancy vectors of different runs. The set SS consistently displays lower MP Differences and higher FO Correlations than the
set DS, confirming the fact that such metrics are subject-specific. The fact that the set SD lies between SS and DS suggests that
some scanning parameters influence the aforementioned metrics for resting-state scans of the same subject, but not as much as
inter-individual differences. Bars represent the median, error bars the SEM. Statistical comparisons were performed with 2-sided
t-tests. (c)–(h) Distributions of values for both metrics and all subjects pooled. The set SS comprises the MP Differences (resp.,
FO Correlations) computed for each subject within the same factor attribute (e.g., for ‘Days’, day 1), and the SS distribution
displays these values for all subjects; the set SD consists of the MP Differences (resp., FO Correlations) computed for each subject
across different attributes of the same factor (e.g., all possible combinations within ‘Days’), and the SD distribution displays these
values for all subjects; finally, the set DS consists of the MP Differences (resp., FO Correlations) computed across all subjects
within the same factor attribute, and the DS distribution displays these values for all attributes of the same factor. For all the
distributions, the black dashed lines illustrate the mean. In panels (g) and (h) the difference between SS and SD distributions was
not significant (table 1).

measures (MP Differences: F2,15 = 7.64, p= 0.005;
FO Correlations: F2,15 = 19.76, p<10−3). Applying
post-hoc comparisons, we found that, on average,
the median MP Differences for the same subject
within the same factor (SS) were significantly lower
than themedianMPDifferences for different subjects
within the same factor (DS), (∼38% lower, 2-sided

t-test, t10 =−3.59, p= 0.005, figure 4(a)). Analog-
ously, on average, the median FO Correlations within
the same factor for the same subject were higher
than across different subjects (∼10% higher, 2-sided
t-test, t10 = 8.15, p<10−3, figure 4(b)). Additional
evidence for how the state time courses of a given sub-
ject (within the same factor attributes) tended to be
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particularly similar was also evident in the FO Cor-
relations median values of the group SS being signi-
ficantly higher than the median FO Correlations in
the groups SD and DS (figure 4(b)). These findings
support the hypothesis that MP Differences and FO
Correlations are robust subject-specific measures, as
they were resilient to the single effect of all the factors
considered in this study.

To further substantiate these results, we used a
simple machine learning approach to predict indi-
viduals based on their brain dynamics fingerprints.
We applied logistic regression to classify the individu-
als in the Traveling-subject dataset by a leave-one-
attribute-out cross-validation procedure (section 2).
In brief, for each factor, we repeated the training and
validation of the classifier as many times as the num-
ber of factor attributes, using each time the samples
of one left-out factor attribute as validation set and
the remaining samples from all other attributes as
training set. We found the accuracy of the classi-
fication to be consistently well above the theoret-
ical chance level (9 subjects: 1/9≈ 0.11), scoring on
average 0.22± 0.02 for the classification based on
MPs (a single value for each factor attribute) (t-test
against chance level, t5 = 16.4, p<10−4), 0.30± 0.03
for the classification based on FOs (a length-11 vector
for each factor attribute) (t-test against chance level,
t5 = 17.62, p<10−3), and 0.28± 0.02 when using
the combined measures (t-test against chance level,
t5 = 21.56, p<10−3). We report the classification res-
ults for each factor in see supplementary table 3
(see also supplementary figure 7).

3.3. In rs-fMRI data, not all factors are equal
Given that the Traveling-subject dataset contained a
considerable number of factors, we inquired which
of these factors, and to what extent, influenced the
subject-specific fingerprints defined on the HMM
state time courses. Specifically, we askedwhich factors
affected the MP Differences and the FO Correlations
most, both within and across subjects. Thus, we com-
pared three different groups (SS, SD, and DS, as illus-
trated in figure 1(b)) of MP Differences and FO Cor-
relations, for six different factors, each containing at
least two attributes (see supplementary table 1 for the
full list of factors and associated attributes).

Although different runs always carried some vari-
ability, some factors seemed to influence the MP Dif-
ferences and the FO Correlations more than inher-
ent inter-subject differences. We summarize the main
results of this comparison in figure 4 and report the
additional ones in supplementary figure 8. We also
report in table 1 the results of Kolmogorov-Smirnov
nonparametric tests between all the distributions of
values for the groups of MP Differences and FO Cor-
relations. More in detail, by comparing the distri-
butions of values for both metrics between the sets
SS (Same subject and Same factor attribute) and SD
(Same subject and Different factor attributes), we

Table 1. 2-Sample Kolmogorov-Smirnov test results for MP
Differences and FO Correlations. The check-mark indicates that
the difference is significant (i.e. the null hypothesis that the
samples are drawn from the same underlying continuous
population can be rejected at the 5% significance level), and the
cross otherwise. All p-values have been FDR-adjusted [52] and
they all satisfy p<10−3 when the null hypothesis is rejected. Test
statistics are reported in supplementary table 2. SS: Same subject
Same factor attribute. SD: Same subject Different factor
attributes. DS: Different subjects Same factor attribute.

MP Diff. FO Corr.

SS SD SS SD
vs vs vs vs

Factor SD DS SD DS

1. Site ✓ ✓ ✓ ✓
2. Day ✓ ✓ ✓ ✓
3. Phase 8 ✓ 8 ✓
4. Channels/coil ✓ ✓ ✓ ✓
5. Manufacturer ✓ ✓ ✓ ✓
6. Scanner ✓ ✓ ✓ 8

found them to be statistically different (p<10−3, see
table 1) for all factors except for the phase encoding
direction, as also noticeable in figures 4(g) and (h).
It is worth noting that the median MP Difference of
any given subject displayed only small changes in the
comparison within attribute vs between attributes for
all factors (2-sided t-test, t10 =−1.55, p= 0.15); com-
patibly, themedian FOCorrelations were, on average,
∼6.5% higher in the group SS than in the group SD
(2-sided t-test, t10 = 3.43, p= 0.007).

Additionally, the machine learning classifications
of brain dynamics fingerprints described earlier were
qualitatively generally in agreement with these find-
ings. Leave-one-attribute-out classification revealed
that, for both fingerprints, the accuracy in predict-
ing individual subjects was the lowest when the train-
ing and validation sets were based on different days
(see supplementary table 3).

To further evaluate the influence that differ-
ent scanning variables have on MP Differences and
FO Correlations, we directly compared their effects
across these fingerprints. We first analyzed the raw
medians of the distributions of MP Differences and
FO Correlations for each scanning factor in the
groups SS (Same subject Same factor attribute),
SD (Same subject Different factor attributes), and
DS (Different subjects Same factor attribute). We
found that, while both fingerprints possessed a shared
variance (figure 5(a), Coefficient of determination
R2 = 0.375), they also provided independent inform-
ation. In fact, as evident not only by their distri-
butions of values in figure 4, MP Differences dis-
played consistently larger median differences within
the three groups of values (SS, SD, DS) than FO Cor-
relations (figure 5(a), 2-sided Wilcoxon signed rank
test, z = 3.68, p<10−3).

Next, to achieve an unbiased estimate of the
effect size of each factor on the distributions of MP
Differences and FO Correlations, we computed the
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Figure 5. Effect of scanning factors within and across MP Differences and FO Correlations distributions. The dashed line
represents the diagonal y = x. (a) The x and y axes represent the median of MP Differences and 1—median of FO Correlations,
respectively, for different scanning factors in different groups SS, SD, and DS, along with the standard error of mean. The median
of MP Differences is more affected by all of the scanning factors (Wilcoxon signed-rank test, z = 3.68, p<10−3). (b) The effect
size (Cohen’s d) values obtained by comparing the log-transformed distributions of the MP Differences and FO Correlations
across different scanning session factors and attributes. The ellipses represent the least squares minimization of the distance from
the cloud of points for each of the three sets [53]. The largest effect sizes were consistently caused by the factors site and day, for all
the comparisons between groups of distributions. (c) Median differences between the sets SD and DS. Positive values suggest that
the noise induced in our metrics by different scanning factors is larger than the inherent inter-subject differences. The factor
scanner is depicted differently as it was not statistically significant for the FO Correlations (see table 1).

Cohen’s d from the log-transformed distributions of
the MP Differences and FO Correlations across all
scanning factors, between groups SS-SD and SD-DS.
Figure 5(b) highlights how the dissimilarity between
brain dynamics fingerprints was the greatest when
comparing, for the same scanning factor, measures
from the same subject and measures from differ-
ent subjects. Based on this observation, we assessed
which scanning factors influenced the median val-
ues of the groups SD and DS the most by comput-
ingmSD −mDS, wherem denoted the median, for the
MP Differences, and (1−mSD)− (1−mDS) for the
FOCorrelations. Notice that a positive value indicates
that the noise induced by different factors (group SD)
has a larger effect than than inter-subject differences
(group DS). In accordance with the analysis above,
we found that most of the scanning factors seemed
to induce less noise on our metrics than the inter-
subject differences. Therefore, while site and day were
the co-variate associated with the largest effect in the
two groups SS vs SD and SD vs DS (figure 5(b)), the

results in figure 5(c) suggest that the number of coils
and the manufacturer are the only factors for which
we can robustly estimate the effect on the data, bey-
ond inter-subject differences.

4. Discussion

In this work, we addressed the issues of reprodu-
cibility and variability of fMRI data from the angle
of brain dynamics. We leveraged the large HCP col-
lection of rs-fMRI data to infer a HMM capable of
describing brain state time courses at the subject level.
By applying such a model to a dataset of traveling
subjects, we found that brain network dynamics dis-
played signature fingerprints that were robust to dif-
ferent physical and temporal factors affecting the data
that populates multi-site collections of neuroimaging
data. Precisely, we found that MP Differences and FO
Correlations are reliable, stable individual traits, as
shown by the SS/DS differences, when taken across all
factors (figures 4(a) and (b)). This study corroborates
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and complements previous work that found that the
emergence of temporal patterns of brain activity tend
to repeat more similarly within the same subject and
over time [28, 33, 54]. This result promotes fur-
ther investigations on the dynamical characteristics of
brain states.

Recent years have witnessed a growing interest
in the identification and characterization of the
factors that tend to introduce spurious effects in
multi-site fMRI recordings, endangering the repro-
ducibility and the overall quality of the results that
may be inferred from these data. The first warn-
ings came from a study that investigated sources
of nuisance variation across multiple sites and their
impact on rs-fMRI data [23], followed by a num-
ber of studies that reported mostly consistent results
[14–16, 19, 20]. Although we used different meth-
ods, our finding that different scanning factors intro-
duce noise into brain dynamics fingerprints (as can
be seen by the SS/SD comparisons in figure 5(b))
is in line with prior reports [16, 19]. Furthermore,
the present study made use of larger datasets. The
Traveling-subject dataset contains the largest num-
ber of subjects out of all the aforementioned studies.
To date, only [16] has more sites than the Traveling-
subject dataset used in this study, but it has the draw-
back of scanning only a single subject. The Traveling-
subject dataset also allowed for the analysis of some
scanning factors—such as the numbers of channels
per coil or different scanner models within the same
vendor—that have not been taken into consideration
in previous work, giving more breadth and depth to
our findings.Nevertheless, it is important to stress out
that the potential variability brought in by scanning
factors may not always be a necessarily negative fea-
ture. In fact, such variability may even be a powerful
test for reproducibility of some findings. For instance,
although different scanning factorsmay be confounds
for certain analyses (e.g. comparing participant pop-
ulations from different sites), they can also be used to
test the robustness of a model when generalizing ana-
lyses across sites with different scanning parameters.
Our results complement, from a dynamical point of
view, both seminal and more recent work reporting
more dissimilar resting-state networks inter-subject
than intra-subject [16, 23, 39, 55].

Functional connectivity—typically computed as
the correlation between time series representing the
average activity in a brain region—has been themain-
stay in the analysis of variability in fMRI data. Pre-
vious work has demonstrated that a sizable amount
of recordings from the same site enables precise
measurements of individual variations in functional
connectivity [39], and that individual differences in
functional networks are not affected by anatomical
misalignment [55]. Here, we complement such stud-
ies by showing that individual signatures can still
be (easily) recovered within limited recordings from
multiple sites (i.e. in the Traveling-subject dataset).

To note, the comparison of functional connectiv-
ity between scanning sessions is inherently different
from the comparison of state time courses. Differ-
ently from functional connectivity computed over a
whole scanning session, the HMM captures the local
temporal wandering of brain activity across states
(networks). Therefore, while comparing functional
connectivity betweendifferent subjectsmay be akin to
comparing longer-term traits, comparing state time
courses between subjects may bemore closely aligned
to comparing a repetition of sequences of brain states
at rest.

While the aforementioned studies on functional
connectivity have significantly increased our under-
standing of the brain as a system that obeys network-
wide principles, they are mainly agnostic to tem-
poral dynamics within the scanning sessions. This
may prevent the level of precision that could at times
be the most clinically relevant [56]. Differently from
[16, 20], where time seemed to play a negligible effect,
we found that different scanning days greatly affected
our estimation of brain network dynamics. As men-
tioned earlier, an intuitive explanation for this appar-
ent discrepancy is that functional connectivity tends
to be associated to more coarsely defined subjective
traits, whereas an HMM, being inherently more sens-
itive to temporal differences, is apt to capture more
instantaneous cognitive processes. It is worth not-
ing that our findings do not go against the claim
that functional connectivity networks remain a reli-
able subject-specific fingerprint over long period of
times, but rather we suggest that brain state traject-
ories can differ extensively between days, probably
due to different cognitive or mental processes. As
such, we suggest that dynamic and static measures
in fact carry complementary information, which may
provide additional insight when used in combination.
However, due the limited number of scanning ses-
sions taken on different days in the Traveling-subject
dataset (see supplementary table 1), and to the inter-
subject variability being larger than the variability
across different factors (see figure 5(c)), future studies
will need to further validate this fact.

How doHMMs compare with the sliding window
approach? The sliding window analysis is typically
used to improve the temporal definition of functional
connectivity studies [57]. Albeit being intrinsically
easier to set up, it has crucial limitations. Namely,
the sliding window size is constrained by a trade-
off between time resolution and quality of the res-
ults, and the conclusions from sliding window studies
tend to be affected by sampling variability [58]. Con-
versely, HMM is as fast as the data modality allows,
since it provides instantaneous likelihood of high cor-
relation between brain signals [33].

If the goal of a study is a robust and detailed
description of a system’s dynamics, the HMM
approach requires large amounts of data for train-
ing purposes, thus appearing not suitable to analyze
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small cohorts of subjects. However, in this study we
give proof-of-concept that one can use a very large
dataset (i.e. HCP) to infer an HMM, which can then
be applied to a smaller dataset. Our results indic-
ate that this procedure is robust. Interestingly, if
only a relatively small number of subjects is avail-
able for the inference process, it is still possible to
recover a coarser—and nonrandom—representation
of the brain dynamics by using the TPM inferred
from a large dataset as a prior (see supplementary
figure 6(d)). Thus, detailed analyses and claims based
onHMMshould be gauged on the size of the available
data. This is a common requirement in neuroimaging
studies, as functional connectivity studies also require
large amount of data to enable precise measurements
[39].

Despite its capabilities, HMM is based on some
premises (see also [31, 33] for thorough discussions).
It is worth noting that the HMM builds on the
Markovian assumption, theorizing that we can pre-
dict, based on the state we are at time t, which state
is more likely to follow at time t+ 1. Yet, while the
brain may violate this assumption due to established
long-range temporal dependencies [4], FO Correla-
tions and MP Differences inherently display inform-
ation that appears at longer time scales.

There are some limitations to this work. For
example, while the decoding approach utilized here—
training the HMM on the HCP data, and infer brain
states trajectories in the Traveling-subject dataset, is
a strength of this study, it is also one of its limita-
tions. The HCP and Traveling-subject datasets har-
bor some differences relating to the scanning pro-
tocols or even the countries in which the data were
collected (US and Japan). For instance, the sampling
rate of the two datasets were originally different
(TRHCP = 0.72 s and TRTS = 2.5 s). As such, the up-
sampling of the Traveling-subject dataset may have
been sub-optimal and thus bias the overall HMM-
based brain state dynamics estimation. Yet, the pres-
ence of these very differences appear to corrobor-
ate the finding that brain dynamics fingerprints are
subject-specific. Specifically, we still find that, on
average, the MP Differences (resp., FO Correlations)
are lower (resp., higher) within subjects than across
subjects, even when comparing runs with different
scanning parameters. The fact that, at the within-
subject level, these twomeasures had very similar val-
ues to those obtained from the HCP dataset (where
both model and fingerprints were derived from the
same data) provides strong support for this interpret-
ation (i.e. brain dynamics fingerprints are subject-
specific), such that it is unlikely that these results are
due to inherent bias or noise. A second limitation
may arise from the factors that were considered in the
traveling-subject dataset. Although there are several
factors, some with many attributes (e.g. there are 12
sites), these factors are sometimes nested within each
other. For instance, within the same phase encoding

attribute there are scans belonging to different sites.
This aspect may have partly influenced (reduced)
the effect size of such factors which are heterogen-
eous with respect to other factors, while factors such
as day or site would remain unaffected, since these
scans were recorded at the same site, with the same
protocol. Above all, while the Traveling-subject data-
set allowed us to investigate the nuisance effect of
multiple variables, it did not offer any insight into
other relevant scanning factors such as TR length, the
duration of the scanning session, and voxel sizes. To
enhance our collective appraisal of the sources of vari-
ability in heterogeneous collections of rs-fMRI data,
it will be important to generate datasets that include
variations along these additional dimensions.

Given the considerable recent advances in infer-
ence techniques [31, 59, 60], and the ever-increasing
availability of computational power, our work further
suggests that theHMM is, and,most importantly, will
be, a powerful technique to explain and interpret the
dynamic aspects of the brain. Furthermore, the pos-
sibility of inferring anHMMon a very large dataset to
apply it to a much smaller one has important implic-
ations for clinical applications. In the future, perhaps
with even more data, these general models could be
built and then utilized to infer subject-specific fin-
gerprints in other smaller cohorts and be used for a
more personalized approach to treatments. In other
words, a one-size-fits-all approach could be employed
to build the model in its general terms, consequently
allowing us tomove to a personalized course of action
by evaluating the model at the individual level. For
instance, closed-loop fMRI neurofeedback [61, 62]
could significantly benefit from these models, which
will allow for a more holistic approach to the dynam-
ical properties of mental and cognitive processes, par-
ticularly from a clinical perspective [37, 56, 63, 64].

5. Conclusion

In thiswork,we address the important issues of repro-
ducibility and variability of fMRI data. We leveraged
the large, homogeneous HCP collection of resting-
state data to reliably infer a HMM capable of describ-
ing the brain state time courses at the subject level.
By applying such a model to a dataset of travel-
ing subjects, we show that dynamical states can be
estimated reliably. Specifically, we find that brain net-
work dynamics displays fingerprints that are robust
to different scanning factors and distinctive for each
subject. Further, we explore which scanning factors
impact measures of brain dynamics the most, and
what is the magnitude of their effect. We find that,
amongst the scanning factors available in our data-
set, sites and days tend to induce higher variability in
the estimation of individual brain state time courses.
However, due to the large noise induced by inter-
subject variability and the limited sample size, this
claim will need further validation by future studies.
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These results enable and promote further invest-
igations on the dynamical characteristics of brain
states. Once a goodmodel is inferred, it can be applied
to a battery of different goals, such as the analysis of
task-based datasets, the examination of data collec-
tions from subjects with neurological disorders, and
the promising use in clinical or rehabilitation settings,
for instance by using brain state inference in clinical
populations to estimate the best time for providing a
given treatment.
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