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Functional control of oscillator networks
Tommaso Menara 1, Giacomo Baggio2, Dani Bassett 3,4 & Fabio Pasqualetti 5✉

Oscillatory activity is ubiquitous in natural and engineered network systems. The interaction

scheme underlying interdependent oscillatory components governs the emergence of

network-wide patterns of synchrony that regulate and enable complex functions. Yet,

understanding, and ultimately harnessing, the structure-function relationship in oscillator

networks remains an outstanding challenge of modern science. Here, we address this chal-

lenge by presenting a principled method to prescribe exact and robust functional config-

urations from local network interactions through optimal tuning of the oscillators’

parameters. To quantify the behavioral synchrony between coupled oscillators, we introduce

the notion of functional pattern, which encodes the pairwise relationships between the

oscillators’ phases. Our procedure is computationally efficient and provably correct, accounts

for constrained interaction types, and allows to concurrently assign multiple desired func-

tional patterns. Further, we derive algebraic and graph-theoretic conditions to guarantee the

feasibility and stability of target functional patterns. These conditions provide an interpretable

mapping between the structural constraints and their functional implications in oscillator

networks. As a proof of concept, we apply the proposed method to replicate empirically

recorded functional relationships from cortical oscillations in a human brain, and to redis-

tribute the active power flow in different models of electrical grids.
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The complex coordinated behavior of oscillatory compo-
nents is linked to the function of many natural and tech-
nological network systems1–3. For instance, distinctive

network-wide patterns of synchrony4–6 determine the coordi-
nated motion of orbiting particle systems7, promote successful
mating in populations of fireflies8, regulate the active power flow
in electrical grids9, predict global climate change phenomena10,
dictate the structural development of mother-of-pearl in
mollusks11, and enable numerous cognitive functions in the
brain12,13. Since this rich repertoire of patterns emerges from the
properties of the underlying interaction network14, controlling
the collective configuration of interdependent units holds tre-
mendous potential across science and engineering15. Despite its
practical significance, a comprehensive method to enforce
network-wide patterns of synchrony by intervening in the net-
work’s structural parameters does not yet exist.

In this work, we develop a rigorous framework that allows us to
optimally control the spatial organization of the network com-
ponents and their oscillation frequencies to achieve desired pat-
terns of synchrony. We abstract the rhythmic activity of a system
as the output of a network of diffusively coupled oscillators16,17

with Kuramoto dynamics. This modeling choice is motivated by
the rich dynamical repertoire and wide adoption of Kuramoto
oscillators18. Specifically, we consider an undirected network G ¼
fO; Eg of n oscillators with dynamics

_θi ¼ ωi þ ∑
n

j¼1
Aij sinðθj � θiÞ; ð1Þ

where ωi 2 R and θi 2 S1 are the frequency and phase of the ith
oscillator, respectively, A= [Aij] is the weighted adjacency matrix
of G, and O ¼ f1; ¼ ; ng and E � O ´O denote the oscillator
and interconnection sets, respectively. In this work, we consider
the case where the network G admits both cooperative (i.e.,
Aij > 0) and competitive (i.e., Aij < 0)19 interactions among the
oscillators, as well as the more constrained case of purely coop-
erative interactions that arises in several real-word systems. For
instance, negative interactions are not physically meaningful in
networks of excitatory neurons, in power distribution networks
(where the interconnection weight denotes conductance and
susceptance of a transmission line), and in urban transportation

networks (where interconnections denote the number of vehicles
on a road with respect to its maximum capacity).

To quantify the pairwise functional relations between oscilla-
tory units, and inspired by the work in ref. 20, we define a local
order parameter that, compared to the classical Pearson corre-
lation coefficient, does not depend on sampling time and is more
convenient when dealing with periodic phase signals (see Sup-
plementary Information). Given a pair of phase oscillators i and j
with phase trajectories θi(t) and θj(t), we define the correlation
coefficient

ρij ¼ hcosðθjðtÞ � θiðtÞÞit ; ð2Þ
where 〈 ⋅〉t denotes the average over time. A functional pattern
is formally defined as the symmetric matrix R whose i, jth entry
equals ρij. Importantly, a functional pattern explicitly encodes the
pairwise, local, correlations across all of the oscillators, which are
more informative than a global observable (e.g., the order
parameter16,21). It is easy to see that, if two oscillators i and j
synchronize after a certain initial transient, ρij converges to 1 as
time increases. If two oscillators i and j become phase-locked (i.e.,
their phase difference remains constant over time), then their
correlation coefficient converges to some constant value with a
magnitude smaller than 1. If the phases of two oscillators i and j
evolve independently, then their correlation value remains small
over time. A few questions arise naturally, which will be answered
in this paper. Are all functional patterns achievable? Which
network configurations allow for the emergence of multiple target
functional patterns? And, if a certain functional pattern can be
achieved, is it robust to perturbations? Surprisingly, we reveal that
controlling functional patterns can be cast as a convex optimi-
zation problem, whose solution can be characterized explicitly.
Figure 1 shows our framework and an example of control of
functional patterns for a network with 7 oscillators. In the paper,
we will validate our methods by replicating functional patterns
from brain recordings in an empirically reconstructed neuronal
network, and by controlling the active power distribution in
multiple models of the power grid.

While synchronization phenomena in oscillator networks have
been studied extensively (e.g., see refs. 22–26), the development of
control methods to impose desired synchronous behaviors has

Fig. 1 Network control to enforce a desired functional pattern from an abnormal or undesired one. The left panel contains a network of n= 7 oscillators
(top left panel, line thickness is proportional to the coupling strength), whose vector of natural frequencies ω has zero mean. The phase differences with
respect to θ1 (i.e., θi−θ1) converge to π
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, as also illustrated in the phases' evolution from random initial conditions (bottom left panel, color

coded). The center left panel depicts the functional pattern R corresponding to such phase differences over time. The right panel illustrates the same
oscillator network after a selection of coupling strengths and natural frequencies have been tuned (in red, the structural parameters A and ω are adjusted
to Ac and ωc) to obtain the phase differences 2π
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, which encode the desired functional pattern in the center right. In this example, we have

computed the closest set (in the ℓ1-norm sense) of coupling strengths and natural frequencies to the original ones that enforce the emergence of the target
pattern. Importantly, only a subset of the original parameters has been modified.
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only recently attracted the attention of the research
community27–30. Perhaps the work that is closest to our approach
is ref. 28, where the authors tailor interconnection weights and
natural frequencies to achieve a specified level of phase cohe-
siveness in a network of Kuramoto oscillators. Our work
improves considerably upon this latter study, whose goal is lim-
ited to prescribing an upper bound to the phase differences, by
enabling the prescription of pairwise differences and by investi-
gating the stability properties of different functional patterns.
Taken together, existing results highlight the importance of
controlling distinct configurations of synchrony, but remain
mainly focused on the control of “macroscopic” observables of
synchrony (e.g., the average synchronization level of all the
oscillators). In contrast, our control method prescribes desired
pairwise levels of correlation across all of the oscillators, thus
enabling a precise “microscopic” description of functional
interactions.

Results
Feasible functional patterns in positive networks. A functional
pattern is an n × n matrix whose entries are the time-averaged
cosine of the differences in the oscillator phases (see Eq. (2)).
When the oscillators reach an equilibrium, the differences of the
oscillator phases become constant, and the network evolves into a
phase-locked configuration. In this case, the functional pattern of
the network also becomes constant and is uniquely determined by
the phase differences at the equilibrium configuration. In this
work, we study functional patterns for the special case of phase-
locked oscillators and, since a functional pattern can be specified
using a set of phase differences at equilibrium, convert the pro-
blem of generating a functional pattern into the problem of
ensuring a desired phase-locked equilibrium. We recall that, while
convenient for the analysis, phase-locked configurations play a
crucial role in the functioning of many natural and man-made
networks31–33.

For the undirected network G ¼ ðO; EÞ, let xij= θj−θi be the
difference of the phases of the oscillators i and j, and let x 2 RjEj

be the vector of all phase differences with ði; jÞ 2 E and i < j. The
network dynamics (1) can be conveniently rewritten in vector
form as (see the “Methods” section)

BDðxÞδ ¼ ½ω1 � � �ωn�T � _θ; ð3Þ

where B 2 Rn ´ jEj is the (oriented) incidence matrix of the
network G, DðxÞ 2 RjEj ´ jEj is a diagonal matrix of the sine
functions in Eq. (1), and δ 2 RjEj is a vector collecting all the
weights Aij with i < j. Because we focus on phase-locked
trajectories, all oscillators evolve with the same frequency and
the vector _θ satisfies _θ ¼ ωmean1, where ωmean ¼ 1

n∑
n
i¼1 ωi

� �
is the

average of the natural frequencies of the oscillators. Further, since
G contains only n oscillators, any phase difference xij can always
be written as a function of n−1 independent differences; for
instance, {x12, x23,…, xn−1,n}. For instance, for any pair of
oscillators i and j with i < j, it holds xij ¼ ∑j�1

k¼i xk;kþ1. This
implies that the vector of all phase differences in equation (3), and
in fact any n × n functional pattern, has only n− 1 degrees of
freedom and can be uniquely specified with a set of n−1
independent differences xdesired (see the “Methods” section).
Following this reasoning and to avoid cluttered notation, let
ω ¼ ½ω1 � ωmean � � �ωn � ωmean�T, and notice that the problem of
enforcing a desired functional pattern simplifies to (i) converting
the desired functional pattern to the corresponding phase
differences xdesired, and (ii) computing the network weights δ to

satisfy the following equation:

BDðxÞδ ¼ ω; ð4Þ
where we note that the vector ω has zero mean and that, with a
slight abuse of notation, D(x) denotes the jEj-dimensional
diagonal matrix of the sine of the phase differences uniquely
defined by the (n−1)-dimensional vector xdesired.

We begin by studying the problem of attaining a desired
functional pattern using only nonnegative weights. With the
above notation, for a desired functional pattern corresponding to
the phase differences x, this problem reads as

find δ ð5Þ

subject to BDðxÞδ ¼ ω; ð5aÞ

and δ ≥ 0: ð5bÞ
It should be noticed that the feasibility of the optimization
problem (5) depends on the sign of the entries of the diagonal
matrix D(x), but is independent of their magnitude. To see this,
notice that

DðxÞ ¼ signðDðxÞÞjDðxÞj;
where the sign( ⋅ ) and absolute value ∣ ⋅ ∣ operators are applied
element-wise. Then, Problem (5) is feasible if and only if there
exists a nonnegative solution to

BsignðDðxÞÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
�B

jDðxÞjδ|fflfflffl{zfflfflffl}
�δ

¼ ω:

The feasibility of the latter equation, in turn, depends on the
projections of the natural frequencies ω on the columns of �B: a
nonnegative solution exists if ω belongs to the cone generated by
the columns of �B. This also implies that, if a network admits a
desired functional pattern x then, by tuning its weights, the same
network can generate any other functional pattern xnew such that
sign(D(xnew))= sign(D(x)). Thus, by properly tuning its weights,
a network can generally generate a continuum of functional
patterns determined uniquely by the signs of its incidence matrix
and the oscillators natural frequencies. This property is illustrated
in Fig. 2 for the case of a line network.

A sufficient condition for the feasibility of Problem (5) is as
follows:

There exists δ ≥ 0 such that BD(x)δ= ω if there exists a set S
satisfying:

(i.a) DiiðxÞDjjðxÞBT
:;iB:;j ≤ 0 for all i; j 2 Swith i ≠ j and

Dii,Djj ≠ 0;
(i.b) ωTB:,iDii(x) > 0 for all i 2 S;
(i.c) ω 2 ImðB:;SÞ.
Equivalently, the above conditions ensure that ω is contained

within the cone generated by the columns of �B:;S (see Fig. 3a for a
self-contained example). To see this, rewrite the pattern assign-
ment problem BD(x)δ= ω as

BDðxÞδ ¼ B:;SDS;SðxÞδS þ B:;~SD~S;~SðxÞδ~S ¼ ω; ð6Þ
where the subscripts S and ~S denote the entries corresponding to
the set S and the remaining ones, respectively. If the vectors B:,i,
i 2 S, are linearly independent, condition (i.a) implies that
DS;SB

T
:;SB:;SDS;S is an M-matrix; that is, a matrix which has

nonpositive off-diagonal elements and positive principal
minors34. Otherwise, the argument holds verbatim by replacing
S with any subset Sind � S such that the vectors B:,i, i 2 Sind, are
linearly independent. Condition (i.c) guarantees the existence of a
solution to B:;SDS;SδS ¼ ω. A particular solution to the latter
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equation is

δS ¼ ðB:;SDS;SðxÞÞyω ¼ ðDS;SðxÞBT
:;SB:;SDS;SðxÞÞ

�1
DS;SðxÞBT

S;Sω> 0

where (⋅)† denotes the Moore–Penrose pseudo-inverse of a
matrix. The positivity of δS follows from condition (i.b) and the
fact that the inverse of an M-matrix is element-wise
nonnegative34. We conclude that a solution to Eq. (6) is given
by δS ¼ ðB:;SDS;SðxÞÞyω> 0 and δ~S ¼ 0.

To avoid disconnecting edges or to maintain a fixed network
topology, a functional pattern should be realized in Problem (5)
using a strictly positive weight vector (that is, δ > 0 rather than
δ ≥ 0). While, in general, this is a considerably harder problem, a
sufficient condition for the existence of a strictly positive solution
δ > 0 is that the network with incidence matrix �B contains an
Hamiltonian path, that is, a directed path that visits all the
oscillators exactly once (Fig. 3b shows a network containing an
Hamiltonian path). Namely,

There exists a strictly positive solution δ > 0 to BD(x)δ= ω if
(ii.a) the network with incidence matrix �B contains a directed

Hamiltonian path H;
(ii.b) ωTB:,iDii(x) > 0 for all i 2 H;
The incidence matrix �B:;H of a directed Hamiltonian path H

has two key properties. First, it comprises n−1 linearly
independent columns, since the path covers all the vertices and
contains no cycles. This guarantees that ω 2 ImðB:;HÞ. Second, the
columns of the incidence matrix �B:;H satisfy �BT

:;i
�B:;i ¼ 2 and

�BT
:;i
�B:;j 2 f0;�1g for all i; j 2 H, i ≠ j. Then, letting the set S in the

result above identify the columns of the Hamiltonian path,
conditions (ii.a) and (ii.b) imply (i.a)–(i.c), thus ensuring the
existence of a nonnegative set of weights δ that solves the pattern
assignment problem BD(x)δ= ω. Furthermore, by rewriting the
pattern assignment problem as in Eq. (6), the following vector of

interconnection weights solves such an equation (see the
“Methods” section):

δH ¼ ðB:;HDH;HðxÞÞyðω� B:; ~HD ~H; ~HðxÞδ ~HÞ:
Because �B:;H ¼ B:;HDH;H defines an Hamiltonian path and

because of (ii.b), the vector ðB:;HDH;HðxÞÞyω contains only strictly
positive entries. Thus, for any sufficiently small and positive
vector δ ~H, the weights δH are also strictly positive, ultimately
proving the existence of a strictly positive solution to the pattern
assignment problem (see the “Methods” section). Figure 3c
illustrates a self-contained example.

Taken together, the results presented in this section reveal that
the interplay between the network structure and the oscillators’
natural frequencies dictates whether a desired functional pattern
is achievable under the constraint of nonnegative (or even strictly
positive) interconnections. First, dense positive networks with a
large number of edges are more likely to generate a desired
functional pattern, since their incidence matrix features a larger
number of candidate vectors to satisfy conditions (i.a)–(i.c).
Second, densely connected networks are also more likely to
contain an Hamiltonian path, thus promoting also strictly
positive network designs. Third, after an appropriate relabeling
of the oscillators such that any interconnection from i to j in the
Hamiltonian path satisfies i < j, condition (ii.b) is equivalent to
requiring that ωi < ωj. That is, the feasibility of a functional
pattern is guaranteed when the natural frequencies increase
monotonically with the ordering identified by the Hamiltonian
path. This also implies, for instance, that sparsely connected
positive networks, and not only dense ones, can attain a large
variety of functional patterns. An example is a connected line
network with increasing natural frequencies, which can generate,
among others, any functional pattern defined by phase differences
that are smaller than π

2 (trivially, when the phase differences are

Fig. 2 Mapping between desired phase differences and interconnection weights. a A line network of n= 4 nodes and its parameters. The desired phase
differences are shown in red. b Left panel: space of the phase differences; right panel: space of the interconnection weights. The pattern x is illustrated in
red in the left panel, and the network weights that achieve such a pattern are represented in red in the right panel. For fixed natural frequencies ω, the green
parallelepiped on the left represents the continuum of functional patterns within 0.2 radians from x which can be generated by the positive interconnection
weights in the green parallelepiped on the right.

Fig. 3 Algebraic and graph-theoretic conditions for the existence of positive weights that attain a desired functional pattern. a The left side illustrates a
simple network of 3 oscillators with adjacency matrix �B and vector of natural frequencies ω. The right side illustrates the cone generated by the columns of
�B. In this example, S ¼ f1; 2g satisfies the conditions for the existence of δ≥ 0 in Eq. (5), as ω is contained within the cone generated by the columns �B:;S .
b The (directed) Hamiltonian path described by the columns of �B:;H, with H ¼ f1; 2g, in the network of panel (a). c The existence of such an Hamiltonian
path, together with a positive projection of ω onto �B:;H, also ensure that there exists a strictly positive δ > 0 solution to BD(x)δ=ω. In particular, for any
choice of x12, x23∈ (0, π), Eq. (4) reveals that if 0<A13 <0:5= sinðx12 þ x23Þ, then there exist strictly positive weights A12 > 0 and A23 > 0 such that δ > 0.
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smaller than π
2 and the natural frequencies are increasing, a line

network contains an Hamiltonian path and the vector of natural
frequencies has positive projections onto the columns of the
incidence matrix). Figure 2a contains an example of such a
network.

Compatibility of multiple functional patterns. A single choice
of the interconnections weights can allow for multiple desired
functional patterns, as long as they are compatible with the net-
work dynamics in Eq. (1). In this section, we provide a char-
acterization of compatible functional patterns in a given network,
and derive conditions for the existence of a set of interconnection
weights that achieve multiple desired functional patterns. Being
able to concurrently assign multiple functional patterns is crucial,
for instance, to the investigation and design of memory systems35,
where different patterns of activity correspond to distinct mem-
ories. Furthermore, our results complement previous work on the
search for equilibria in oscillator networks36.

To find a set of functional patterns that exist concurrently in a
given network with fixed interconnection weights δ, we exploit
the algebraic core of Eq. (4) and show that the kernel of the
incidence matrix B uniquely determines the equilibria of the
network. In fact, for a given network (i.e., δ with nonzero
components) all compatible equilibria x(i), i∈ {1,…, ℓ}, must
satisfy

DðxðiÞÞδ ¼ Byωþ kerðBÞ: ð7Þ
From Eq. (7), we can see that the sine vector of all compatible
equilibria must belong to a specific affine subspace of RjEj:

sinðxðiÞÞ 2 diagðδÞ�1 Byωþ kerðBÞ� �
: ð8Þ

Rewriting Eq. (4) in the above form connects the existence of
distinct functional patterns with kerðBÞ, the latter featuring a
number of well-known properties. For instance, it holds that
dimðkerðBÞÞ ¼ jEj � nþ c, where c is the number of connected
components in a network, and that kerðBÞ coincides with the
subspace spanned by the signed path vectors of all undirected
cycles in the network37. Notice also that, after a suitable
reordering of the phase differences in x, we can write

sinðxÞ ¼ ½sinðxTdesiredÞ sinðxTdepÞ�
T
, where xdep denotes the phase

differences dependent on n−1 desired phase differences xdesired.
Thus, all the xdesired for which sinðxdepÞ intersects the affine space
described by diagðδÞ�1ðByωþ kerðBÞÞ identify compatible func-
tional patterns.

To showcase how the intimate relationship between the
network structure and the kernel of its incidence matrix enables
the characterization of which (and how many) compatible
patterns coexist, we consider three essential network topologies:
trees, cycles, and complete graphs. For the sake of simplicity, we
let δ= 1 and ω= 0, so that Eq. (8) holds whenever
sinðxðiÞÞ 2 kerðBÞ. In networks with tree topologies it holds
kerðBÞ ¼ 0, and sinðxðiÞÞ ¼ 0 is satisfied by 2n−1 patterns of the
form xðiÞjk ¼ 0; π, for all ðj; kÞ 2 E. Consider now cycle networks,
where kerðBÞ ¼ span 1. For any cycle of n ≥ 3 oscillators, two
families of patterns are straightforward to derive. First, there are
2n−1 patterns of the form xðiÞk;kþ1 ¼ 0; π, with k= 1,…, n−1, and

xðiÞn1 ¼ �∑n�1
k¼1 x

ðiÞ
k;kþ1. Second, there are n−1 splay states17, where

the oscillators’ phases evenly span the unitary circle, with
xðiÞjk ¼ 2πm

n , m= 1,…, n−1, ðj; kÞ 2 E. Figure 4 illustrates the
compatible functional patterns satisfying Eq. (8) in a positive
network of three fully synchronizing oscillators. In general,
however, cycle networks of identical oscillators admit infinite
coexisting patterns. For instance, Fig. 5 shows how we can

parameterize infinite equilibria with a scalar γ 2 S1 in a cycle of
n= 4 oscillators. Finally, as complete graphs are equivalent to a
composition of cycles, they also admit infinite compatible
patterns that can be parameterized akin to what occurs in a
simple cycle (see Supplementary Fig. 2).

We now turn our attention to finding the interconnection
weights that simultaneously enable a collection of ℓ ≥ 1 desired

functional patterns fxðiÞg‘i¼1. We first notice that Eq. (7) reveals
that to achieve a desired functional pattern x(i) with components
not equal to kπ, k 2 Z, the network weights δ must belong to an
jEj-dimensional affine subspace of RjEj:

δ 2 DðxðiÞÞ�1
Byωþ kerðBÞ� �

; 8i ¼ 1; ¼ ; ‘: ð9Þ
Let Γi ¼ DðxðiÞÞ�1ðByωþ kerðBÞÞ. Then, to concurrently realize a

collection of patterns fxðiÞg‘i¼1, a solution to Eq. (9) exists if and
only if

T‘
i¼1 Γi ≠ ;. It is worth noting that, whenever the latter

intersection coincides with a singleton, then there exists a single

choice of network weights that realizes fxðiÞg‘i¼1. However, ifT‘
i¼1 Γi corresponds to a subspace, then infinite networks can

realize the desired collection of functional patterns. We conclude
by emphasizing that a positive δ that achieves the desired patterns
exists if and only if ðT‘

i¼1 ΓiÞ \RjEj
≥ 0≠;. That is, if the network

weights belong to the nonempty intersection of the ℓ affine
subspaces with the positive orthant.

Stability of functional patterns. A functional pattern is stable
when small deviations of the oscillators phases from the desired
configuration lead to vanishing functional perturbations. Stability
is a desired property since it guarantees that the desired func-
tional pattern is robust against perturbations to the oscillators
dynamics. To study the stability of a functional pattern, we
analyze the Jacobian of the Kuramoto dynamics at the desired
functional configuration, which reads as17

J ¼ ∂

∂θ
_θ ¼ �Bdiag ðfAij cosðxijÞgði;jÞ2EÞB

T

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
L ðxÞ

;
ð10Þ

where LðxÞ denotes the Laplacian matrix of the network with
weights scaled by the cosines of the phase differences (the weight
between nodes i and j is Aij cosðθj � θiÞ). The functional pattern x
is stable when the eigenvalues of the above Jacobian matrix have
negative real parts. For instance, if all phase differences are strictly
smaller than π

2 (that is, the infinity-norm of x satisfies k x k1< π
2),

then the Jacobian in Eq. (10) is known to be stable17. In the case
that both cooperative and competitive interactions are allowed,
we can ensure stability of a desired pattern by specifying the
network weights in δ such that Aij > 0 if jxijj< π

2 and Aij < 0
otherwise, so that the matrix L becomes the Laplacian of a
positive network (see Methods). Furthermore, we observe that in
the particular case where some differences jxijj ¼ π

2, the network
may become disconnected since cosðxijÞ ¼ 0. Because the Lapla-
cian of a disconnected network has multiple eigenvalues at zero,
marginal stability may occur, and phase trajectories may not
converge to the desired pattern.

When some phase differences are larger than π
2 and the network

allows only for nonnegative weights, then stability of a functional
pattern is more difficult to assess because the Jacobian matrix
becomes a signed Laplacian38. The off-diagonal entries of a signed
Laplacian satisfy Lij > 0 whenever jxijj> π

2, thus possibly changing
the sign of its diagonal entries Lii ¼ ∑jAij cosðxijÞ and violating
the conditions for the use of classic results from algebraic graph
theory for the stability of Laplacian matrices. To derive a
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condition for the instability of the Jacobian in Eq. (10), we exploit
the notion of structural balance. We say that the cosine-scaled
network with Laplacian matrix L is structurally balanced if and
only if its oscillators can be partitioned into two sets, O1 and O2,
such that all ði; jÞ 2 E with Aij cosðxijÞ < 0 connect oscillators in
O1 to oscillators in O2, and all ði; jÞ 2 E with Aij cosðxijÞ > 0
connect oscillators within Oi, i∈ {1, 2}. If a network is
structurally balanced, then its Laplacian has mixed eigenvalues38.
Therefore, we conclude the following:

If the functional pattern x yields a structurally balanced cosine-
scaled network, then x is unstable.

The above condition allows us to immediately assess the
instability of functional patterns for the special cases of line and
cycle networks. In fact, for a line network with positive weights, x

is unstable whenever jxijj > π
2 for any i, j. Instead, for a cycle

network with positive weights, the pattern x can be stable only if
it contains at most one phase difference π

2 < jxijj<γ, where
γ ≈ 1.789776 solves γ� tanðγÞ ¼ 2π (see Supplementary Infor-
mation). In the next section, we propose a heuristic procedure to
correct the interconnection weights in positive networks to
promote stability of a functional pattern.

Optimal interventions for desired functional patterns. Armed
with conditions to guarantee the existence of positive inter-
connections that enable a desired functional pattern, we now
show that the problem of adjusting the network weights to gen-
erate a desired functional pattern can be cast as a convex opti-
mization problem. Formally, for a desired functional pattern x

Fig. 4 The intersection of an affine space with sinðxdepÞ determines the compatible functional patterns of 3 identical oscillators. Consider a fully
connected network of n= 3 identical oscillators with zero natural frequency and δ= 1. It is well known that x(1)= [0 0]T, x(2)= [π 0]T, x(3)= [0 π]T,
x(4)= [π π]T are phase difference equilibria. Furthermore, because sinðθÞ ¼ sinðπ � θÞ, this figure illustrates sinðx13Þ as a function of x12 and x23 in four
different panels: sinðx12 þ x23Þ (top left), sinðπ � x12 þ x23Þ (top right), sinðx12 þ π � x23Þ (bottom left), and sinð�x12 � x23Þ (bottom right). The fourth panel
reveals that the two functional patterns compatible with x(j), j∈ {1,…, 4}, correspond to x(5)= [2π/3 2π/3]T and x(6)= [−2π/3 −2π/3]T (in red).

Fig. 5 A homogeneous cycle network admits infinite compatible functional patterns. Since kerðBÞ ¼ span 1, the cycle network admits infinite compatible
equilibria, which can be parameterized by γ 2 S1 as xðiÞðγÞ ¼ ½π2 � γ; π2 þ γ; π2 � γ; π2 þ γ�T. Any arbitrarily small variation of γ yields sinðxðiÞðγÞÞ 2 kerðBÞ. The
right panel illustrates the patterns associated with x(i)(γ), i= 1,…, 5 for increments of γ of 0.2 radians.
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and network weights δ, we seek to solve

min
α

αk k2 ð11Þ

subject to BDðxÞðδ þ αÞ ¼ ω; ð11aÞ

and ðδ þ αÞ≥ 0; ð11bÞ
where α 2 RjEj are the controllable modifications of the network
weights, and ∥ ⋅ ∥2 denotes the ℓ2-norm. Figure 6a illustrates the
control of a functional pattern in a line network of n= 4
oscillators.

The minimization problem (11) is convex, thus efficiently
solvable even for large networks, and may admit multiple
minimizers, thus showing that different networks may exhibit
the same functional pattern. Moreover, in light of our results
above, Problem (11) can be easily adapted to assign a collection of

desired patterns fxðiÞg‘i¼1. To do so, we simply replace the
constraint (11a) with

BDðxðiÞÞðδ þ αÞ ¼ ω; 8i ¼ 1; ¼ ; ‘: ð12Þ
Figure 6b illustrates an example where we jointly allocate two
functional patterns for a complete graph with n= 7 oscillators
(see Supplementary Information for more details on this
example).

Note that the minimization problem (11) does not guarantee
that the functional pattern x is stable for the network with weights

δ+ α*. To promote stability of the pattern x, we use a heuristic
procedure based on the classic Gerschgorin’s theorem39. Recall
that the stability of x is guaranteed when the associated Jacobian
matrix has a Laplacian structure, with negative diagonal entries
and nonnegative off-diagonal entries. Further, instability of x
depends primarily on the negative off-diagonal entries Aij cosðxijÞ
of the Jacobian (these entries are negative because the sign of the
network weight Aij is different from the sign of the cosine of the
desired phase difference xij). Therefore, reducing the magnitude
of such entries Aij heuristically moves the eigenvalues of the
Jacobian towards the stable half of the complex plane (this
phenomenon can be captured using the Gerschgorin circles, as we
show in Fig. 7 for a network with 7 nodes). To formalize this
procedure, let δN and αN denote the entries of the weights δ and
tuning vector α, respectively, that are associated to negative
interconnections Aij cosðxijÞ< 0 in the cosine-scaled network.
Then, the optimization problem that enacts the proposed strategy
becomes:

min
α

δN þ αN
�� ��

2

subject to BDðxÞðδ þ αÞ ¼ ω;

and ðδ þ αÞ≥ 0:
ð13Þ

Carefully reducing the weights δN þ αN promotes stability of
the target pattern. Figure 7 illustrates the shift of the Jacobian’s

Fig. 6 Optimal interventions for desired functional patterns. a For the line network in Fig. 2a, we solve Problem (11) to assign the desired pattern
xdesired ¼ ½4π5 π

3
π
10�

T
. The starting pattern xoriginal ¼ ½ π10 π

3
4π
5 �

T
is associated with interconnection weights δ= [3.4026 3.4641 6.4721]T. Applying the optimal

correction α* yields positive interconnection weights δ+ α*= [6.4721 3.4026 3.4641]T that achieve the desired functional patterns xdesired. b Joint
allocation of two compatible equilibria for the phase difference dynamics. By taking θ1 as a reference, we choose two points for the phase differences
x1i= θi− θ1, i∈ {2,…, 7}, to be imposed as equilibria in a network of n= 7 oscillators: xð1Þdesired ¼ π

6
π
6
π
4
π
4
π
6
π
4

� �T
and xð2Þdesired ¼ π

8
π
3
π
4
π
4
π
6
π
4

� �T
. In this example, we

find a set of interconnection weights (δ+ α*) that solves the minimization problem (11) with constraint (12). The trajectories start at the (unstable)
equilibrium point xð1Þdesired at time t= 0, and converge to the point xð2Þdesired after a small perturbation p 2 T7, with π∈ [0 0.05], is applied to the phase
difference trajectories at time t= 50.
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eigenvalues while the optimal tuning vector α* is gradually
applied to a 7-oscillator network to achieve stability of a
functional pattern containing negative correlations (the network
parameters can be found in the Supplementary Information).
Finally, we remark that the procedure in Eq. (13) can be further
refined by introducing scaling constants to penalize δN þ αN

�� ��
2

differently from the modification of other interconnection
weights (see Supplementary Information for further details and
an example).

The minimization problems (11) and (13) do not allow us to
tune the oscillators’ natural frequencies, and are constrained to
networks with positive weights. When any parameter of the
network is unconstrained and can be adjusted to enforce a desired
functional pattern, the network optimization problem can be
generalized as

min
α;β

αT βT
� ��� ��

2 ð14Þ

subject to BDðxÞðδ þ αÞ ¼ ½ω1 � � �ωn�T þ β;

ð14aÞ
where β denotes the correction to the natural frequencies.
Problem (14) always admits a solution because β can be chosen to
satisfy the constraint (14a) for any choice of the network
parameters δ+ α. Further, the (unique) solution to the
minimization problem (14) can also be computed in closed form:

α�

β�

� 	
¼ BDðxÞ �In

� �y ½ω1 � � �ωn�T � BDðxÞδ� �
where In denotes the n × n identity matrix.

We conclude this section by noting that the minimization
problems (11)–(14) can be readily extended to include other
vector norms besides the ℓ2-norm in the cost function (e.g., the
ℓ1-norm to promote sparsity of the corrections), and to be

applicable to directed networks. The latter extension can be
attained by replacing the constraints (11a) and (14a) with a
suitable rewriting of the matrix form (4). We refer the interested
reader to the Supplementary Information for a comprehensive
treatment of this extension and an example.

Applications to complex networks
In the remainder of this paper, we apply our methods to an
empirically reconstructed brain network and to the IEEE 39 New
England power distribution network. In the former case, we use
the Kuramoto model to map structure to function and find that
local metabolic changes underlie the emergence of functional
patterns of recorded neural activity. In the latter case, we use our
methods to restore the nominal network power flow after a fault.

Local metabolic changes govern the emergence of distinct
functional patterns in the brain. The brain can be studied as a
network system in which Kuramoto oscillators approximate the
rhythmic activity of different brain regions12,30,40,41. Over short
time frames, the brain is capable of exhibiting a rich repertoire of
functional patterns while the network structure and the inter-
connection weights remain unaltered. Functional patterns of
brain activity not only underlie multiple cognitive processes but
can also be used as biomarkers for different psychiatric and
neurological disorders42.

To shed light on the structure–function relationship of the
human brain, we utilize Kuramoto oscillators evolving on an
empirically reconstructed brain network. We hypothesize that the
intermittent emergence of diverse patterns stems from changes in
the oscillators’ natural frequencies—which can be thought of as
endogenous changes in metabolic regional activity regulated by
glial cells43 or exogenous interventions to modify undesired
synchronization patterns30. First, we show that phase-locked
trajectories of the Kuramoto model in Eq. (1) can be accurately

Fig. 7 Mechanism underlying the heuristic procedure to promote stability of functional patterns containing negative correlations. For the 7-oscillator
network in Supplementary Text 1.5, we apply the procedure in equation (13) to achieve stability of the pattern xdesired ¼ 21π

32
π
6
π
6
π
8
π
8
π
3

� �T
, where

x12 ¼ θ2 � θ1>
π
2. The left plot illustrates the Gerschgorin disks (in blue) and the Jacobian's eigenvalues locations for the original network (as dark dots). The

complex axis is highlighted in purple. It can be observed in the zoomed-in panel that one eigenvalue is unstable (λ2= 0.0565, in red). The optimal
correction α* is gradually applied to the existing interconnections from the left-most panel to the right-most one at 1

3 increments. The right zoomed-in panel
shows that, as a result of our procedure, n− 1 eigenvalues ultimately lie in the left-hand side of the complex plane (λ1= 0 due to rotational symmetry and
λ2=− 0.0178, in green).
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extracted from noisy measurements of neural activity and are a
relatively accurate approximation of empirical data.

We employ structural (i.e., interconnections between brain
regions) and functional (i.e., time series of recorded neural
activity) data from ref. 40. Structural connectivity consists of a
sparse weighted matrix A whose entries represent the strength of
the physical interconnection between two brain regions. Func-
tional data comprise time series of neural activity recorded
through functional magnetic resonance imaging (fMRI) of
healthy subjects at rest. Because the phases of the measured
activity have been shown to carry most of the information
contained in the slow oscillations recorded through fMRI time
series, we follow the steps in ref. 40 to obtain such phases from the
data by filtering the time series in the [0.04, 0.07] Hz frequency
range (Supplementary Information). Next, since frequency
synchronization is thought to be a crucial enabler of information
exchange between different brain regions and homeostasis of
brain dynamics44,45, we focus on functional patterns that arise
from phase-locked trajectories, as compatible with our analysis.
For simplicity, we restrict our study to the cingulo-opercular
cognitive system, which, at the spatial scale of our data, comprises
n= 12 interacting brain regions46.

We identify time windows in the filtered fMRI time series
where the signals are phase-locked, and compute two matrices for
each time window: a matrix F 2 R12 ´ 12 of Pearson correlation
coefficients (also known as functional connectivity), and a
functional pattern R 2 R12 ´ 12 (as in equation (2)) from the
phases extracted by solving the nonconvex phase synchronization
problem47. Strikingly, we find that ∥F−R∥2≪ 1 consistently
(see Supplementary Information and Supplementary Fig. 7b),
thus demonstrating that our definition of the functional pattern is
a good replacement for the classical Pearson correlation
arrangements in networks with oscillating states.

Building upon the above finding, we test whether the
oscillators’ natural frequencies embody the parameter that links
the brain network structure to its function (i.e., structural and
functional matrices). We set ω= BD(x)δ, where x are phase
differences obtained from the previous step, and integrate the
Kuramoto model in Eq. (1) with random initial conditions close

to x. We show in Fig. 8 that the assignment of natural frequencies
according to the extracted phase differences promotes sponta-
neous synchronization to accurately replicate the empirical
functional connectivity F.

These results corroborate the postulate that structural connec-
tions in the brain support the intermittent activation of specific
functional patterns during rest through regional metabolic
changes. Furthermore, we show that the Kuramoto model
represents an accurate and interpretable mapping between the
brain anatomical organization and the functional patterns of
frequency-synchronized neural co-fluctuations. Once a good
mapping is inferred, it can be used to define a generative brain
model to replicate in silico how the brain efficiently enacts large-
scale integration of information, and to develop personalized
intervention schemes for neurological disorders related to
abnormal synchronization phenomena48,49.

Power flow control in power networks for fault recovery and
prevention. Efficient and robust power delivery in electrical grids
is crucial for the correct functioning of this critical infrastructure.
Modern, reconfigurable power networks are expected to be resi-
lient to distributed faults and malicious cyber-physical attacks50

while being able to rapidly adapt to varying load demands. In
addition, climate change is straining service reliability, as
underscored by recent events such as the Texas grid collapse after
Winter Storm Uri in February 202151, and the New Orleans
blackout after Hurricane Ida in August 202152. Therefore, there
exists a dire need to design control methods to efficiently operate
these networks and react to unforeseen disruptive events.

The Kuramoto model in Eq. (1) has been shown to be
particularly relevant in the modeling of large distribution
networks and microgrids9. Preliminary work on the control of
frequency synchronization in electrical grids modeled through
Kuramoto oscillators has been developed in ref. 53. Here, we
present a method that leverages our findings to guarantee not
only frequency synchronization but also a target pattern of active
power flow. Our method can be used for power (re)distribution
with respect to specific pricing strategies, fault prevention (e.g.,
when a line overheats), and recovery (e.g., after the disconnection

Fig. 8 Replication of empirically recorded functional connectivity in the brain through tuning of the natural frequencies of Kuramoto oscillators. The
anatomical brain organization provides the network backbone over which the oscillators evolve. The filtered fMRI time series provide the relative phase
differences between co-fluctuating brain regions, and thus define the desired phase differences x, which is used to calculate the metabolic change encoded
in the oscillators' natural frequencies. In this figure, we select the 40-s time window from t0= 498 s to tf= 538 s for subject 18 in the second scanning
session. We obtain ∥R−F∥2= 0.2879. Additionally, we verify that the analysis of the Jacobian spectrum (see Eq. (10)) accurately predicts the stability of
the phase-locked trajectories. Supplementary Fig. 7a illustrates the basin of attraction of R, which we numerically estimate to be half of the torus.
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of a branch). Furthermore, thanks to the formal guarantees that
our method prescribes, we are able to prevent Braess’ Paradox in
power networks54, which is a phenomenon where the addition of
interconnections to a network may impede its synchronization.

It has been shown in ref. 9, Lemma 1 that the load dynamics
(nodes 1–29 in Fig. 9a) in a structure-preserving power grid
model have the same stable synchronization manifold of Eq. (1).
In this model, ωi ¼ p‘i=Di is the active power load at node i,
where Di is the damping coefficient, and Aij ¼ jvijjvjjIðYijÞ=Di,
with vi denoting the nodal voltage magnitude and IðYijÞ being
the imaginary part of the admittance Yij (see Supplementary
Information for details about this model). In this example, we
choose a highly damped scenario where Di= 1, which is possibly
due to local excitation controllers. Notice that, when the phase
angles θ are phase-locked and Aij is fixed, the active power flow is
given by Aij sinðθj � θiÞ.

We posit that solving the problem in Eq. (11) to design a local
reconfiguration of the network parameters can recover the power
distribution before a line fault or provide the smallest parameter
changes to steer the load powers to desired values. In practice,
control devices such as flexible alternating current transmission
systems (FACTs) allow operators and engineers to change the
network parameters55,56. We demonstrate the effectiveness of our
approach by recovering a desired power distribution in the IEEE
39 New England power distribution network after a fault. During
a regime of normal operation, we simulate a fault by disconnect-
ing the line between two loads and solve the problem in Eq. (11)
to find the minimum modification of the couplings aij that
recovers the nominal power distribution.

We first utilize MATPOWER57 to solve the power flow
problem. Then we use the active powers pℓ and voltages v at the
buses to obtain the natural frequencies ω and the adjacency
matrix A of the oscillators, respectively, while the voltage phase
angles are used as initial conditions θ(0) for the Kuramoto
model in equation (1). We integrate the Kuramoto dynamics
and let the voltage phases θ(t) reach a frequency-synchronized
steady state, which corresponds to a normal operating
condition. The phase differences also represent a functional
pattern across the loads. Next, to simulate a line fault, we
disconnect one line. By solving the problem in Eq. (11) with
xdesired corresponding to the pre-fault steady-state voltage
phase differences, we compute the smallest variation of the

remaining parameters (i.e., admittances) so that the original
functional pattern can be recovered. Figure 9b illustrates the
effectiveness of our procedure at recovering the nominal
pattern of active power flow by means of minimal and localized
interventions (see also Supplementary Fig. 8).

The above application is based on a classical lossless structure-
preserving power network model9. However, in the power
systems literature, more complex dynamics that relax some of
the modeling assumptions have been proposed. For instance,
ref. 58 uses a third-order model (or one-axis model) that takes
into account transient voltage dynamics. Instead, ref. 59 studies
the case of interconnections with power losses, which lead to a
network of phase-lagged Kuramoto–Sakaguchi oscillators60. We
show in the Supplementary Information that our procedure to
recover a target functional pattern can still be applied successfully
to a wide range of situations involving these more realistic
models.

Discussion
Distinct configurations of synchrony govern the functioning of
oscillatory network systems. This work presents a simple and
mathematically grounded mapping between the structural para-
meters of arbitrary oscillator networks and their components’
functional interactions. The tantalizing idea of prescribing pat-
terns in networks of oscillators has been investigated before, yet
only partial results had been reported in the literature. Here, we
demonstrate that the control of patterns of synchrony can be cast
as optimal (convex) design and tuning problems. We also
investigate the feasibility of such optimizations in the cases of
networks that admit negative coupling weights and networks that
are constrained to positive couplings. Our control framework also
allows us to prescribe multiple desired equilibria in Kuramoto
networks, a problem that is relevant in practice and had not been
investigated before.

As stability of a functional pattern may be a compelling
property in many applications, we explore conditions to test and
enforce the stability of functional patterns. We show that such
conditions are rather straightforward in the case of networks that
admit both cooperative and competitive interactions. However,
stability of target functional patterns in networks that are con-
strained to only cooperative interactions is a more challenging
task, for which we demonstrate that any pattern associated with a

Fig. 9 Fault recovery in the IEEE 39 New England power distribution network through minimal and local intervention. a New England power distribution
network. The generator terminal buses illustrate the type of generator (coal, nuclear, hydroelectric). We simulate a fault by disconnecting the transmission
line 25 (between loads 13 and 14). b The fault causes the voltage phases θ to depart from normal operating conditions, which could cause overheating of
some transmission lines (due to violation of the nominal thermal constraint limits) or abnormal power delivery. To recover the pre-fault active power flow
and promote a local (sparse) intervention, we solve the optimization in Eq. (11) by minimizing the 1-norm of the structural parameter modification δ with no
scaling parameters in the cost functional. The network returns to the initial operative conditions with a localized modification of the neighboring
transmission lines' impedances.
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structurally balanced cosine-weighted network cannot be stable.
To overcome this issue, we propose a heuristic procedure that
adjusts the oscillators’ coupling strengths to violate the structu-
rally balanced property and promote the stability of functional
patterns with negative correlations. While heuristic, our proce-
dure for stability has proven successful in all our numerical stu-
dies. Notice that, differently from methods that study an
“average" description of the system at a near-synchronous state
(see, e.g., ref. 61), here we assess the stability of exact target phase-
locked trajectories where phase values can instead be arbitrarily
spread over the torus. This method can also be extended to assess
the stability of equilibria of higher-dimensional oscillators, pro-
vided that the considered equilibrium state is a fixed point.

We emphasize that our results are also intimately related to the
long-standing economic problem of enhancing network opera-
tions while optimizing wiring costs. In any complex system where
synchrony between components ensures appropriate functions, it
is beneficial to maximize synchronization while minimizing the
physical variations of the interconnection weights62. Compatible
with this principle, neural systems are thought to have evolved to
maximize information processing by promoting synchronization
through optimal spatial organization63. Inspired by the efficiency
observed in neurobiological circuitry, Eq.(11) could be utilized for
the design of optimal interaction schemes in large-scale computer
networks whose performance relies on synchronization-based
tasks64.

An important consideration that highlights the general con-
tributions of the present study is that being able to specify pairwise
functional relationships between the oscillators also solves pro-
blems such as phase-locking, full, and cluster synchronization. Yet,
the converse is not true. In fact, even in the general setting of cluster
synchronization65—where distinct groups of oscillators behave
cohesively—one can only achieve a desired synchronization level
within the same cluster, but not across clusters, which instead is
possible with our approach. Specifically, in cluster synchronization,
oscillators belonging to the same cluster are forced to synchronize,
thus implying that the associated diagonal blocks of the functional
pattern R display values close to 1. Seminal work in ref. 66 devel-
oped a nonlinear feedback control to change the coupling functions
in Eq. (2) to engineer clusters of synchronized oscillators, whereas
the authors of ref. 67 propose the formation of clusters through
selective addition of interconnections to the network. More
recently, the control of partially synchronized states with applica-
tions to brain networks is studied in ref. 30 by means of structural
interventions, and in ref. 68 via exogenous stimulation. Ultimately,
the results presented in this work not only complement but go well
beyond the control of macroscopic synchronization observables
and partial synchronization by allowing to specify the synchrony
level of pairwise interactions.

While our contributions include the analysis of the stability
properties of functional patterns, here we do not assess their
basins of attraction. We emphasize that, in general, the estimation
of the basin of attraction of the attractors of nonlinear systems
remains an outstanding problem, and even the most recent results
rely on numerical approaches or heavy modeling assumptions69.
Further, in the case of coupled Kuramoto oscillators, existing
literature shows that the number of equilibria for the phase dif-
ferences increases significantly with the cardinality of the
network36, making the study of basins of attraction extremely
challenging. In the Supplementary Information, we extend pre-
vious work on identical oscillators to networks with hetero-
geneous oscillators, and show that functional patterns can be at
most almost-globally stable in cluster-synchronized positive net-
works. Yet, a precise estimation of the basin of attraction for any
arbitrary target pattern goes beyond the scope of this work and

may require the derivation of ad-hoc principles based on Lya-
punov’s stability theory70.

The framework presented in this work has other limitations,
which can be addressed in follow-up studies. First, despite its
capabilities in modeling numerous oscillatory network systems,
the Kuramoto model cannot capture the amplitude of the oscil-
lations, making it most suitable for oscillator systems where most
of the information is conveyed by phase interaction as demon-
strated in ref. 40 for resting brain activity. To model brain activity
during cognitively demanding tasks such as learning, higher-
dimensional oscillators may be more suitable71. Second, the use of
phase-locked trajectories is instrumental to the control and design
of functional patterns. Yet, it is not necessary. In fact, restricting
the control to phase-locked dynamics does not capture exotic
dynamical regimes in which only a subset of the oscillators is
frequency-synchronized. Third and finally, in some situations, the
network parameters are not fully known. While still an active area
of research, network identification of oscillator systems may be
employed in such scenarios72.

Directions of future research can be both of a theoretical and
practical nature. For instance, follow-up studies can focus on the
derivation of a general condition for the stability of a feasible func-
tional pattern in positive networks. Further, a thorough investigation
of which network structures allow for multiple prescribed equilibria
may be particularly relevant in the context of memory systems,
where different patterns are associated with different memory states.
Specific practical applications may also require the inclusion of
sparsity constraints on the accessible structural parameters for the
implementation of the proposed control and design framework.

Methods
Matrix form of Eq. (1) and phase-locked solutions. For a given network of
oscillators, we let the entries of the (oriented) incidence matrix B be defined
component-wise after choosing the orientation of each interconnection (i, j). In
particular, i points to j if i < j, and Bkℓ=−1 if oscillator k is the source node of the
interconnection ℓ, Bkℓ= 1 if oscillator k is the sink node of the interconnection ℓ,
and Bkℓ= 0 otherwise. The matrix form of Eq. (1) can be written as

_θ ¼ ω1 � � �ωn

� �T � B

. .
.

sinðxijÞ
. .
.

2
6664

3
7775δ

¼ ω1 � � �ωn

� �T � B diag fsinðxijÞgði;jÞ2E

 �

δ ¼ ω1 � � �ωn

� �T � BDðxÞδ;

where D(x) is the diagonal matrix of the sine functions in Eq. (1).
When the oscillators evolve in a phase-locked configuration, the oscillator

frequencies become equal to each other and constant. In particular, since 1TB= 0,
we have 1T _θ ¼ 1Tk1 ¼ 1T½ω1 � � �ωn�T , thus showing that in any phase locked
trajectory, the oscillator's frequency k needs to equal the mean natural frequency
1
n∑

n
i¼1 ωi .

Any feasible functional pattern has n−1 degrees of freedom. The values of a
functional pattern can be uniquely specified using a set of n−1 correlation values. To
see this, let us define the incremental variables x=Mθ, where M 2 RjEj ´ n is the
matrix whose kth row, associated to xij, is all zeros except for bki=−1 and bkj= 1.
Consider the first n−1 rows of M, associated with x12, x13,…x1n, and notice that they
are linearly independent. Moreover, the row associated to xij, i > 1, can be obtained by
subtracting the row associated to x1i to the row associated to x1j, implying that the rank
ofM is n−1. Any collection of n−1 linearly independent rows ofM defines a full row-
rank matrixMmin (e.g., any n−1 rows corresponding to the transpose incidence matrix
of a spanning tree37). We let xmin ¼ Mminθ, where xmin is a smallest set of phase
differences that can be used to quantify the synchronization angles among all oscil-
lators. Because kerðMminÞ ¼ 1, we can obtain the phases θ from xmin modulo rotation:
θ ¼ My

minxmin � c1, where My
min denotes the Moore–Penrose pseudo-inverse of Mmin

and c is some real number. Further, since kerðMminÞ ¼ kerðMÞ, we can reconstruct all
phase differences x from xmin:

MMy
minxmin ¼ Mðθ þ c1Þ ¼ Mθ þ 0 ¼ x:

The above equation reveals that all the differences x are encoded in xmin.
That is, any xij can be written as a linear combination of the elements in xmin.
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For example, if n= 3 and xmin ¼ ½x12 x23�T, then x13 is a linear combination of

the differences in xmin, i.e., x ¼
�1 1 0
0 �1 1
�1 0 1

2
4

3
5 �1 1 0

0 �1 1

� 	y
xmin, in which

x13= x12+ x23. Thus, because n−1 incremental variables define all the
remaining ones, the entries of any functional pattern must have only n−1
degrees of freedom.

Existence of a strictly positive solution to Problem 5. Rewrite the pattern
assignment problem BD(x)δ= ω as

BDðxÞδ ¼ B:;HDH;HðxÞδH þ B:; ~HD ~H; ~HðxÞδ ~H ¼ ω;

where the subscriptsH and ~H denote the entries corresponding to the Hamiltonian
path in conditions (ii.a) and (ii.b) and the remaining ones, respectively. Since
Imð�B:;HÞ ¼ ImðB:;HD:;HðxÞÞ ¼ spanð1Þ? , ImðB:; ~HD:; ~HðxÞÞ � spanð1Þ?, and ω∈
span(1)⊥, for any vector δ ~H, the following set of weights solves the above equation:

δH ¼ ðB:;HDH;HðxÞÞyðω� B:; ~HD ~H; ~HðxÞδ ~HÞ ¼ ðDH;HðxÞBT
:;HB:;HDH;HðxÞÞ

�1

DH;HðxÞBT
:;Hðω� B:; ~HD ~H; ~HðxÞδ ~HÞ

Because the matrix DH;HðxÞBT
:;HB:;HDH;HðxÞ is an M-matrix, its inverse has non-

negative entries. Further, by condition (ii.b), DH;HðxÞBT
:;Hω is strictly positive.

Then, the vector ðDH;HðxÞBT
:;HB:;HDH;HðxÞÞ

�1
DH;HðxÞBT

:;Hω is also strictly positive,
and so is the solution vector δH for any sufficiently small and positive vector δ ~H .

Enforcing stability of functional patterns in networks with cooperative and
competitive interactions. To ensure that the Jacobian matrix in Eq. (10) is the
Laplacian of a positive network and, thus, stable, we solve the problem in Eq. (5)
with a slight modification of the constraints. Specifically, we post-multiply the
matrix B in Eq. (5) as BΔ, where Δ ¼ diagðfsignðcosðxijÞÞgði;jÞ2EÞ is a matrix that

changes the sign of the columns of B associated to negative weights in the cosine-
scaled network:

BΔDðxÞδ ¼ ω

Solving for positive interconnection weights the problem in Eq. (5) under the
above-modified constraint yields a stable Jacobian in a network where the final
couplings are Δδ.

Heuristic procedure to promote stability of functional patterns in positive
networks. We provide a heuristic procedure to promote the stability of functional
patterns that include negative correlations in a network with nonnegative weights.
Our procedure relies on the definition of Gerschgorin disks and the Gerschgorin
Theorem.

Definition of Gerschgorin disk. Let M 2 Cn ´ n be a complex matrix. The ith
Gerschgorin disk is Di ¼ ðMii; riÞ, i= 1,…, n, where the radius is ri=∑j≠i∣Mij∣ and
the center is Mii.

Theorem 2. (Gerschgorin39). The eigenvalues of the matrix M lie within the unionSn
i¼1 Di of its Gerschgorin disks.
Whenever all target phase differences in x satisfy jxijj≤ π

2, the Gerschgorin disks
of the Jacobian in Eq. (10) all lie in the closed left half-plane. However, for patterns
x containing phase differences jxijj≥ π

2, the union of the Gerschgorin disks
intersects the right half-plane. Reducing the magnitude of the entries satisfying
Aij cosðxijÞ< 0 effectively shrinks the radius of the Gerschgorin disks that overlap
with the right half-plane and shift their centers towards the left-half plane due to
the structure of the Jacobian matrix. We remark that the procedure in Eq. (13) is a
heuristic, and it is probably effective only when all interconnections with
Aij cosðxijÞ< 0 can be removed so that all the Gerschgorin disks lie completely in
the left-half plane.

Data availability
The brain data that support the findings of this study are publicly available in
the Supplementary Information of40, at https://doi.org/10.1371/journal.pcbi.1004100.
s006. The IEEE 39 New England data parameters and interconnection scheme analyzed
in this study for the structure-preserving power network model can be found in the
reference textbook73 (see also Supplementary Information for modeling assumptions).
The parameters for the simulations on the network-reduced IEEE 39 New England test
case in the Supplementary Information have been obtained from refs. 74,75. All data used
in this study are also available in the public GitHub repository: https://github.com/
tommasomenara/functional_control.

Code availability
Source code and documentation for the numerical simulations presented here are freely
available in GitHub at: https://github.com/tommasomenara/functional_control with the
identifier https://doi.org/10.5281/zenodo.4546413.
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